Neural network-based fixed-time practical attitude synchronization control for uncertain networked spacecraft systems.

IF 6.5
Runlong Peng, Jinchen Ji, Bin Zheng, Nan Li, Zhonghua Miao, Jin Zhou
{"title":"Neural network-based fixed-time practical attitude synchronization control for uncertain networked spacecraft systems.","authors":"Runlong Peng, Jinchen Ji, Bin Zheng, Nan Li, Zhonghua Miao, Jin Zhou","doi":"10.1016/j.isatra.2025.08.005","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the distributed neural network (NN)-based fixed-time practical attitude synchronization of the networked spacecraft systems (NSSs) with model uncertainties and external disturbances. A novel practical attitude synchronization scheme is proposed using the Lagrangian representation of spacecraft attitude dynamics for both leaderless and leader-follower cases. Fixed-time control is first employed to enhance robustness against model uncertainties, and the NN is then integrated to advance its adaptability. Additionally, a unified analytical framework is developed to establish the fixed-time practical stability of the control system using the Lyapunov function method. Furthermore, the allowable upper bound expressions of the practical attitude synchronization error and the settling time are analytically derived for the NSSs. Finally, comparative simulations are conducted to validate the feasibility and effectiveness of the proposed control scheme.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the distributed neural network (NN)-based fixed-time practical attitude synchronization of the networked spacecraft systems (NSSs) with model uncertainties and external disturbances. A novel practical attitude synchronization scheme is proposed using the Lagrangian representation of spacecraft attitude dynamics for both leaderless and leader-follower cases. Fixed-time control is first employed to enhance robustness against model uncertainties, and the NN is then integrated to advance its adaptability. Additionally, a unified analytical framework is developed to establish the fixed-time practical stability of the control system using the Lyapunov function method. Furthermore, the allowable upper bound expressions of the practical attitude synchronization error and the settling time are analytically derived for the NSSs. Finally, comparative simulations are conducted to validate the feasibility and effectiveness of the proposed control scheme.

基于神经网络的不确定网络航天器系统定时实用姿态同步控制。
研究了具有模型不确定性和外部干扰的网络化航天器系统的基于分布式神经网络的固定时间实际姿态同步问题。针对无领导和领导-随从两种情况,提出了一种实用的航天器姿态动力学拉格朗日表示同步方案。首先采用固定时间控制增强对模型不确定性的鲁棒性,然后集成神经网络提高其自适应性。此外,利用李雅普诺夫函数法建立了控制系统定时实用稳定性的统一分析框架。此外,还解析导出了nss实际姿态同步误差和沉降时间的允许上界表达式。最后,通过对比仿真验证了所提控制方案的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信