Aerodynamic parameter identification method based on physics-informed radial basis function-deep neural networks.

IF 6.5
Jungu Chen, Junhui Liu, Jiayuan Shan, Jianan Wang
{"title":"Aerodynamic parameter identification method based on physics-informed radial basis function-deep neural networks.","authors":"Jungu Chen, Junhui Liu, Jiayuan Shan, Jianan Wang","doi":"10.1016/j.isatra.2025.08.039","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the perturbations estimation between the real and nominal aerodynamic parameters. To address this issue, this study proposes an aerodynamic parameter identification method based on the physics-informed radial basis function-deep neural network (PIRBF-DNN). PIRBF-DNN utilizes an integration-based loss function to achieve precise estimation of aerodynamic parameters perturbations and adopts a radial basis function-deep neural network (RBF-DNN) structure to enhance fitting capability of the network. The proposed identification method is validated through simulation in different scenarios and comparison with other aerodynamic parameters identification methods based on physics-informed neural networks (PINNs).</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the perturbations estimation between the real and nominal aerodynamic parameters. To address this issue, this study proposes an aerodynamic parameter identification method based on the physics-informed radial basis function-deep neural network (PIRBF-DNN). PIRBF-DNN utilizes an integration-based loss function to achieve precise estimation of aerodynamic parameters perturbations and adopts a radial basis function-deep neural network (RBF-DNN) structure to enhance fitting capability of the network. The proposed identification method is validated through simulation in different scenarios and comparison with other aerodynamic parameters identification methods based on physics-informed neural networks (PINNs).

基于物理信息径向基函数-深度神经网络的气动参数识别方法。
本文研究了实际气动参数与标称气动参数之间的摄动估计。为了解决这一问题,本研究提出了一种基于物理信息径向基函数-深度神经网络(PIRBF-DNN)的气动参数识别方法。PIRBF-DNN利用基于积分的损失函数实现对气动参数扰动的精确估计,并采用径向基函数-深度神经网络(RBF-DNN)结构增强网络的拟合能力。通过不同场景下的仿真,并与其他基于物理信息神经网络(pinn)的气动参数识别方法进行了比较,验证了所提辨识方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信