Deep Unfolded Variable Projection Networks.

IF 6.4
Gergő Bognár, Manuel Feindert, Christian Huber, Michael Lunglmayr, Mario Huemer, Péter Kovács
{"title":"Deep Unfolded Variable Projection Networks.","authors":"Gergő Bognár, Manuel Feindert, Christian Huber, Michael Lunglmayr, Mario Huemer, Péter Kovács","doi":"10.1142/S0129065725500534","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a hybrid learning framework that integrates two model-driven AI paradigms: Deep unfolding and Variable Projections (VPs). The core idea is to unfold the iterations of VP solvers for separable nonlinear least squares (SNLLS) problems into trainable neural network layers. As a consequence, the network is capable of learning optimal nonlinear VP parameters during inference, which is a form of model-based meta-learning. Furthermore, the architecture incorporates prior knowledge of the underlying SNLLS problem, such as basis function expansions and signal structure, which enhance interpretability, reduce model size, and lower data requirements. As a case study, we adapt the proposed deep unfolded VPNet to learn ECG representations for the classification of five arrhythmias. Experimental results on the MIT-BIH Arrhythmia Database show that VPNet achieves performance comparable to state-of-the-art ECG classifiers, attaining  95% accuracy while maintaining a compact architecture. Its low computational complexity enables efficient training and inference, making it highly suitable for real-time, power-efficient edge computing applications. This is further validated through embedded implementation on STM32 microcontrollers.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550053"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a hybrid learning framework that integrates two model-driven AI paradigms: Deep unfolding and Variable Projections (VPs). The core idea is to unfold the iterations of VP solvers for separable nonlinear least squares (SNLLS) problems into trainable neural network layers. As a consequence, the network is capable of learning optimal nonlinear VP parameters during inference, which is a form of model-based meta-learning. Furthermore, the architecture incorporates prior knowledge of the underlying SNLLS problem, such as basis function expansions and signal structure, which enhance interpretability, reduce model size, and lower data requirements. As a case study, we adapt the proposed deep unfolded VPNet to learn ECG representations for the classification of five arrhythmias. Experimental results on the MIT-BIH Arrhythmia Database show that VPNet achieves performance comparable to state-of-the-art ECG classifiers, attaining  95% accuracy while maintaining a compact architecture. Its low computational complexity enables efficient training and inference, making it highly suitable for real-time, power-efficient edge computing applications. This is further validated through embedded implementation on STM32 microcontrollers.

深度未折叠变量投影网络。
在本文中,我们提出了一个混合学习框架,它集成了两种模型驱动的人工智能范式:深度展开和变量预测(VPs)。其核心思想是将可分离非线性最小二乘(SNLLS)问题的VP求解器的迭代展开为可训练神经网络层。因此,该网络能够在推理过程中学习最优非线性VP参数,这是一种基于模型的元学习形式。此外,该体系结构结合了潜在SNLLS问题的先验知识,例如基函数展开和信号结构,从而增强了可解释性,减小了模型尺寸,降低了数据需求。作为一个案例研究,我们采用所提出的深度展开VPNet来学习ECG表征,用于五种心律失常的分类。在MIT-BIH心律失常数据库上的实验结果表明,VPNet达到了与最先进的ECG分类器相当的性能,在保持紧凑架构的同时达到95%的准确率。其较低的计算复杂性使其能够进行高效的训练和推理,使其非常适合实时,节能的边缘计算应用。通过在STM32微控制器上的嵌入式实现进一步验证了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信