Assessing Large Multimodal Models for One-Shot Learning and Interpretability in Biomedical Image Classification.

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Wenpin Hou, Qi Liu, Huifang Ma, Yilong Qu, Zhicheng Ji
{"title":"Assessing Large Multimodal Models for One-Shot Learning and Interpretability in Biomedical Image Classification.","authors":"Wenpin Hou, Qi Liu, Huifang Ma, Yilong Qu, Zhicheng Ji","doi":"10.1002/aisy.202400947","DOIUrl":null,"url":null,"abstract":"<p><p>Image classification plays a pivotal role in analyzing biomedical images, serving as a cornerstone for both biological research and clinical diagnostics. It is demonstrated that large multimodal models (LMMs), like GPT-4, excel in one-shot learning, generalization, interpretability, and text-driven image classification across diverse biomedical tasks. These tasks include the classification of tissues, cell types, cellular states, and disease status. LMMs stand out from traditional single-modal classification approaches, which often require large training datasets and offer limited interpretability.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202400947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Image classification plays a pivotal role in analyzing biomedical images, serving as a cornerstone for both biological research and clinical diagnostics. It is demonstrated that large multimodal models (LMMs), like GPT-4, excel in one-shot learning, generalization, interpretability, and text-driven image classification across diverse biomedical tasks. These tasks include the classification of tissues, cell types, cellular states, and disease status. LMMs stand out from traditional single-modal classification approaches, which often require large training datasets and offer limited interpretability.

评估生物医学图像分类中一次学习和可解释性的大型多模态模型。
图像分类在生物医学图像分析中起着举足轻重的作用,是生物学研究和临床诊断的基石。研究表明,大型多模态模型(lmm),如GPT-4,在一次性学习、泛化、可解释性和文本驱动的图像分类方面,在不同的生物医学任务中表现出色。这些任务包括组织、细胞类型、细胞状态和疾病状态的分类。lmm从传统的单模态分类方法中脱颖而出,传统的单模态分类方法通常需要大量的训练数据集,并且可解释性有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信