Mussel-Inspired Adhesive and Tough Hydrogel Based on Silk-Triggered Dopamine Polymerization for Wound Healing.

IF 11.6
Smart medicine Pub Date : 2025-08-12 eCollection Date: 2025-09-01 DOI:10.1002/smmd.70016
Yu-Ge Wang, Ting-Ting Zeng, Hao Wu, Ting-Ting Zhu, Hui-Jie Shang, Bo-Wen Shao, Chun-Yan Du, Jian-Jun Yang, Pan-Miao Liu
{"title":"Mussel-Inspired Adhesive and Tough Hydrogel Based on Silk-Triggered Dopamine Polymerization for Wound Healing.","authors":"Yu-Ge Wang, Ting-Ting Zeng, Hao Wu, Ting-Ting Zhu, Hui-Jie Shang, Bo-Wen Shao, Chun-Yan Du, Jian-Jun Yang, Pan-Miao Liu","doi":"10.1002/smmd.70016","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering is a great alternative to repair and regenerate damaged tissues and organs. Hydrogels are promising materials for tissue repair, but optimizing their various functions-such as adhesion, mechanical properties, and vascularization-to suit the complexity of different organs and tissues remains a significant challenge. In this study, we explore a tough and adhesive polydopamine (PDA)-silk-polyacrylamide (PAM) hydrogel inspired by the mussel-inspired adhesion of PDA and the vascularization potential of silk. Through a Schiff base reaction, self-polymerization occurs between the free dopamine and the conjugated dopamine on the silk chains, resulting in the formation of a PDA/silk prepolymer. The presence of PDA in the prepolymer endows the resulting PDA-silk-PAM hydrogel with excellent adhesiveness, strong mechanical properties, and good water absorption. By adjusting the degree of crosslinking, the hydrogel also demonstrates impressive deformability, making it suitable for engineering thicker and more complex tissues and organs. Moreover, benefiting from the vascularization capabilities of silk and the adhesive properties of PDA, the PDA-silk-PAM hydrogel effectively promotes vascularization and accelerates wound healing in full-thickness skin wounds on the backs of Sprague-Dawley rats. Overall, our study provides a straightforward approach to create versatile medical hydrogel with strong potential for clinical applications.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":"4 3","pages":"e70016"},"PeriodicalIF":11.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smmd.70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue engineering is a great alternative to repair and regenerate damaged tissues and organs. Hydrogels are promising materials for tissue repair, but optimizing their various functions-such as adhesion, mechanical properties, and vascularization-to suit the complexity of different organs and tissues remains a significant challenge. In this study, we explore a tough and adhesive polydopamine (PDA)-silk-polyacrylamide (PAM) hydrogel inspired by the mussel-inspired adhesion of PDA and the vascularization potential of silk. Through a Schiff base reaction, self-polymerization occurs between the free dopamine and the conjugated dopamine on the silk chains, resulting in the formation of a PDA/silk prepolymer. The presence of PDA in the prepolymer endows the resulting PDA-silk-PAM hydrogel with excellent adhesiveness, strong mechanical properties, and good water absorption. By adjusting the degree of crosslinking, the hydrogel also demonstrates impressive deformability, making it suitable for engineering thicker and more complex tissues and organs. Moreover, benefiting from the vascularization capabilities of silk and the adhesive properties of PDA, the PDA-silk-PAM hydrogel effectively promotes vascularization and accelerates wound healing in full-thickness skin wounds on the backs of Sprague-Dawley rats. Overall, our study provides a straightforward approach to create versatile medical hydrogel with strong potential for clinical applications.

基于丝触发多巴胺聚合的贻贝灵感粘合剂和坚韧水凝胶用于伤口愈合。
组织工程是修复和再生受损组织和器官的一个很好的选择。水凝胶是一种很有前途的组织修复材料,但优化其各种功能(如粘附性、机械性能和血管化)以适应不同器官和组织的复杂性仍然是一个重大挑战。在这项研究中,我们探索了一种坚韧和粘稠的聚多巴胺(PDA)-丝绸-聚丙烯酰胺(PAM)水凝胶,灵感来自于PDA的贻贝粘附性和丝绸的血管化潜力。通过席夫碱反应,游离多巴胺和丝链上的共轭多巴胺发生自聚合,形成PDA/丝预聚物。预聚体中PDA的存在使所制得的PDA-silk- pam水凝胶具有优异的粘附性、强的机械性能和良好的吸水性。通过调节交联程度,水凝胶还显示出令人印象深刻的可变形性,使其适用于工程中更厚、更复杂的组织和器官。此外,受益于丝的血管化能力和PDA的粘附性能,PDA-silk- pam水凝胶在Sprague-Dawley大鼠背部全层皮肤伤口中有效促进血管化,加速伤口愈合。总的来说,我们的研究提供了一种简单的方法来制造多功能医用水凝胶,具有很强的临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信