Perspectives on non-genetic optoelectronic modulation biointerfaces for advancing healthcare.

Med-X Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI:10.1007/s44258-024-00030-6
Aman Majmudar, Saehyun Kim, Pengju Li, Bozhi Tian
{"title":"Perspectives on non-genetic optoelectronic modulation biointerfaces for advancing healthcare.","authors":"Aman Majmudar, Saehyun Kim, Pengju Li, Bozhi Tian","doi":"10.1007/s44258-024-00030-6","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in optoelectronic biointerfaces have revolutionized healthcare by enabling targeted stimulation and monitoring of cells, tissues, and organs. Photostimulation, a key application, offers precise control over biological processes, surpassing traditional modulation methods with increased spatial resolution and reduced invasiveness. This perspective highlights three approaches in non-genetic optoelectronic photostimulation: nanostructured phototransducers for cellular stimulation, micropatterned photoelectrode arrays for tissue stimulation, and thin-film flexible photoelectrodes for multiscale stimulation. Nanostructured phototransducers provide localized stimulation at the cellular or subcellular level, facilitating cellular therapy and regenerative medicine. Micropatterned photoelectrode arrays offer precise tissue stimulation, critical for targeted therapeutic interventions. Thin-film flexible photoelectrodes combine flexibility and biocompatibility for scalable medical applications. Beyond neuromodulation, optoelectronic biointerfaces hold promise in cardiology, oncology, wound healing, and endocrine and respiratory therapies. Future directions include integrating these devices with advanced imaging and feedback systems, developing wireless and biocompatible devices for long-term use, and creating multifunctional devices that combine photostimulation with other therapies. The integration of light and electronics through these biointerfaces paves the way for innovative, less invasive, and more accurate medical treatments, promising a transformative impact on patient care across various medical fields.</p>","PeriodicalId":74169,"journal":{"name":"Med-X","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med-X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44258-024-00030-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in optoelectronic biointerfaces have revolutionized healthcare by enabling targeted stimulation and monitoring of cells, tissues, and organs. Photostimulation, a key application, offers precise control over biological processes, surpassing traditional modulation methods with increased spatial resolution and reduced invasiveness. This perspective highlights three approaches in non-genetic optoelectronic photostimulation: nanostructured phototransducers for cellular stimulation, micropatterned photoelectrode arrays for tissue stimulation, and thin-film flexible photoelectrodes for multiscale stimulation. Nanostructured phototransducers provide localized stimulation at the cellular or subcellular level, facilitating cellular therapy and regenerative medicine. Micropatterned photoelectrode arrays offer precise tissue stimulation, critical for targeted therapeutic interventions. Thin-film flexible photoelectrodes combine flexibility and biocompatibility for scalable medical applications. Beyond neuromodulation, optoelectronic biointerfaces hold promise in cardiology, oncology, wound healing, and endocrine and respiratory therapies. Future directions include integrating these devices with advanced imaging and feedback systems, developing wireless and biocompatible devices for long-term use, and creating multifunctional devices that combine photostimulation with other therapies. The integration of light and electronics through these biointerfaces paves the way for innovative, less invasive, and more accurate medical treatments, promising a transformative impact on patient care across various medical fields.

Abstract Image

Abstract Image

Abstract Image

推进医疗保健的非遗传光电调制生物接口展望。
光电生物接口的进步通过实现对细胞、组织和器官的靶向刺激和监测,彻底改变了医疗保健。光刺激是一项关键的应用,它提供了对生物过程的精确控制,超越了传统的调制方法,具有更高的空间分辨率和更低的侵入性。这一观点强调了非遗传光电刺激的三种方法:用于细胞刺激的纳米结构光换能器,用于组织刺激的微图案光电极阵列和用于多尺度刺激的薄膜柔性光电极。纳米结构光换能器在细胞或亚细胞水平上提供局部刺激,促进细胞治疗和再生医学。微图案光电极阵列提供精确的组织刺激,对靶向治疗干预至关重要。薄膜柔性光电极结合灵活性和生物相容性可扩展的医疗应用。除了神经调节,光电生物接口在心脏病学、肿瘤学、伤口愈合、内分泌和呼吸治疗方面也有前景。未来的方向包括将这些设备与先进的成像和反馈系统集成,开发长期使用的无线和生物相容性设备,以及创建将光刺激与其他疗法相结合的多功能设备。光和电子通过这些生物界面的集成为创新、微创和更准确的医疗治疗铺平了道路,有望对各个医疗领域的患者护理产生变革性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信