Wireless, passive inductor-capacitor sensors for biomedical applications.

Med-X Pub Date : 2025-01-01 Epub Date: 2025-08-21 DOI:10.1007/s44258-025-00060-8
Baochun Xu, Shubham Patel, Cunjiang Yu
{"title":"Wireless, passive inductor-capacitor sensors for biomedical applications.","authors":"Baochun Xu, Shubham Patel, Cunjiang Yu","doi":"10.1007/s44258-025-00060-8","DOIUrl":null,"url":null,"abstract":"<p><p>In contemporary medical technologies, the necessity for efficient, precise, and real-time health monitoring and management is becoming increasingly critical with the prevalence of chronic diseases and the aging population. Traditional wired sensors and active wireless sensors continue to present numerous problems in practical applications, including complex structures, substantial size, frequent battery replacements, and an elevated risk of infection. Passive and wireless inductor-capacitor (LC) sensors are emerging as significant candidates to address these challenges. These sensors are typically constructed with a simple structure comprising a capacitor and an inductor, operating through magnetic coupling with external reading devices, thereby eliminating the necessity for batteries, connection wires, and peripheral circuits. This review commences with a succinct overview of the theoretical foundations, analyzing equivalent components and operational modes. It subsequently investigates sensor technologies by examining various types of sensors, including pressure, strain, humidity, temperature, and chemical sensors. Through the introduction of two primary scenarios-wearable and implantable-the review elucidates diverse advancements and requirements pertinent to biomedical applications. It concludes with a discussion of challenges and potential solutions to facilitate future developments in this field.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":74169,"journal":{"name":"Med-X","volume":"3 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med-X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44258-025-00060-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In contemporary medical technologies, the necessity for efficient, precise, and real-time health monitoring and management is becoming increasingly critical with the prevalence of chronic diseases and the aging population. Traditional wired sensors and active wireless sensors continue to present numerous problems in practical applications, including complex structures, substantial size, frequent battery replacements, and an elevated risk of infection. Passive and wireless inductor-capacitor (LC) sensors are emerging as significant candidates to address these challenges. These sensors are typically constructed with a simple structure comprising a capacitor and an inductor, operating through magnetic coupling with external reading devices, thereby eliminating the necessity for batteries, connection wires, and peripheral circuits. This review commences with a succinct overview of the theoretical foundations, analyzing equivalent components and operational modes. It subsequently investigates sensor technologies by examining various types of sensors, including pressure, strain, humidity, temperature, and chemical sensors. Through the introduction of two primary scenarios-wearable and implantable-the review elucidates diverse advancements and requirements pertinent to biomedical applications. It concludes with a discussion of challenges and potential solutions to facilitate future developments in this field.

Graphical abstract:

用于生物医学应用的无线无源电感电容器传感器。
在现代医疗技术中,随着慢性病的流行和人口老龄化,高效、精确和实时的健康监测和管理的必要性变得越来越重要。传统的有线传感器和有源无线传感器在实际应用中仍然存在许多问题,包括结构复杂、体积庞大、电池更换频繁以及感染风险高。无源和无线电感-电容(LC)传感器正在成为解决这些挑战的重要候选。这些传感器通常由一个简单的结构构成,包括一个电容器和一个电感,通过与外部读取设备的磁耦合工作,从而消除了对电池、连接线和外围电路的需要。本文从理论基础的简要概述开始,分析等效组件和操作模式。随后,通过检查各种类型的传感器,包括压力、应变、湿度、温度和化学传感器,研究传感器技术。通过介绍可穿戴和植入式两个主要场景,综述阐述了与生物医学应用相关的各种进展和要求。最后讨论了促进这一领域未来发展的挑战和可能的解决办法。图形化的简介:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信