Maximum-entropy and subspace methods for high-resolution relaxation-diffusion distribution estimation.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-08-19 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.113
Lipeng Ning
{"title":"Maximum-entropy and subspace methods for high-resolution relaxation-diffusion distribution estimation.","authors":"Lipeng Ning","doi":"10.1162/IMAG.a.113","DOIUrl":null,"url":null,"abstract":"<p><p>Relaxation-diffusion distribution characterizes tissue microstructure using multi-contrast MRI data without using a multi-compartment model. This work applies and generalizes two nonlinear spectral estimation algorithms to compute relaxation-diffusion distributions and compares their performances with the standard linear inverse method. The first algorithm employs maximum entropy (MaxEnt) estimation, extending previous methods by incorporating measurement noise for improved robustness. The second algorithm is based on the MUltiple SIgnal Classification (MUSIC) subspace spectral estimation technique, enabling pseudo-spectral estimation of multi-exponential signals sampled on regular grids without solving optimization problems. Both methods were compared against the basis representation technique and the nonnegative least squares (NNLS) method using synthetic and <i>in vivo</i> data. MaxEnt demonstrated superior spectral resolution compared to other methods. Meanwhile, the multidimensional MUSIC algorithm provided accurate estimations but required a higher signal-to-noise ratio. MaxEnt and MUSIC improve computational efficiency, especially when a high-resolution sampling grid is required for the density functions.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relaxation-diffusion distribution characterizes tissue microstructure using multi-contrast MRI data without using a multi-compartment model. This work applies and generalizes two nonlinear spectral estimation algorithms to compute relaxation-diffusion distributions and compares their performances with the standard linear inverse method. The first algorithm employs maximum entropy (MaxEnt) estimation, extending previous methods by incorporating measurement noise for improved robustness. The second algorithm is based on the MUltiple SIgnal Classification (MUSIC) subspace spectral estimation technique, enabling pseudo-spectral estimation of multi-exponential signals sampled on regular grids without solving optimization problems. Both methods were compared against the basis representation technique and the nonnegative least squares (NNLS) method using synthetic and in vivo data. MaxEnt demonstrated superior spectral resolution compared to other methods. Meanwhile, the multidimensional MUSIC algorithm provided accurate estimations but required a higher signal-to-noise ratio. MaxEnt and MUSIC improve computational efficiency, especially when a high-resolution sampling grid is required for the density functions.

高分辨率松弛扩散分布估计的最大熵和子空间方法。
松弛-扩散分布特征组织微结构使用多对比MRI数据,而不使用多室模型。本文应用并推广了两种非线性谱估计算法来计算松弛扩散分布,并将其性能与标准线性逆方法进行了比较。第一种算法采用最大熵(MaxEnt)估计,通过结合测量噪声来改进鲁棒性,扩展了以前的方法。第二种算法基于多信号分类(MUSIC)子空间频谱估计技术,实现了在规则网格上采样的多指数信号的伪频谱估计,而无需解决优化问题。将这两种方法与基表示技术和非负最小二乘(NNLS)方法进行比较,并使用合成和体内数据。与其他方法相比,MaxEnt显示出更高的光谱分辨率。同时,多维MUSIC算法提供了准确的估计,但需要更高的信噪比。MaxEnt和MUSIC提高了计算效率,特别是当密度函数需要高分辨率采样网格时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信