Shafaq Batool, Tejdeep Jaswal, Ford Burles, Giuseppe Iaria
{"title":"Hippocampal Volumetric Changes in Astronauts Following a Mission in the International Space Station.","authors":"Shafaq Batool, Tejdeep Jaswal, Ford Burles, Giuseppe Iaria","doi":"10.3390/neurosci6030070","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Evidence from non-human animal and spaceflight analog studies have suggested that traveling to outer space could have a significant impact on the structural properties of the hippocampus, a brain region within the medial temporal lobe that is critical for learning and memory. Here, we tested this hypothesis in a group of astronauts who participated in a six-month mission in the International Space Station (ISS). (2) Methods: We collected magnetic resonance imaging (MRI) scans from a sample of 17 (9 males, 8 females) astronauts before and after the ISS mission, and calculated percent gray matter volume changes in the whole hippocampus and its (anterior, body, and posterior) subregions in both hemispheres. (3) Following the six-month mission in the ISS, we found a significantly decreased volume in the whole left hippocampus; in addition, when looking at subregions separately, we detected a significantly decreased volume in the anterior subregion of the left hippocampus and the body subregion of the right hippocampus. We also found a significantly decreased volume in the whole right hippocampus of male astronauts as compared to female astronauts. (4) Conclusions: This study, providing the very first evidence of hippocampal volumetric changes in astronauts following a six-month mission to the ISS, could have significant implications for cognitive performance during future long-duration spaceflights.</p>","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"6 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci6030070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
(1) Background: Evidence from non-human animal and spaceflight analog studies have suggested that traveling to outer space could have a significant impact on the structural properties of the hippocampus, a brain region within the medial temporal lobe that is critical for learning and memory. Here, we tested this hypothesis in a group of astronauts who participated in a six-month mission in the International Space Station (ISS). (2) Methods: We collected magnetic resonance imaging (MRI) scans from a sample of 17 (9 males, 8 females) astronauts before and after the ISS mission, and calculated percent gray matter volume changes in the whole hippocampus and its (anterior, body, and posterior) subregions in both hemispheres. (3) Following the six-month mission in the ISS, we found a significantly decreased volume in the whole left hippocampus; in addition, when looking at subregions separately, we detected a significantly decreased volume in the anterior subregion of the left hippocampus and the body subregion of the right hippocampus. We also found a significantly decreased volume in the whole right hippocampus of male astronauts as compared to female astronauts. (4) Conclusions: This study, providing the very first evidence of hippocampal volumetric changes in astronauts following a six-month mission to the ISS, could have significant implications for cognitive performance during future long-duration spaceflights.