Evaluating the effect of voxel size on the accuracy of 3D volumetric analysis measurements of brain tumors.

IF 2.3
Frontiers in radiology Pub Date : 2025-08-06 eCollection Date: 2025-01-01 DOI:10.3389/fradi.2025.1618261
Rithvik S Ghankot, Manwi Singh, Shelby T Desroches, Noemi Jester, Amit Mahajan, Samantha Lorr, Frank D Buono, Daniel H Wiznia, Michele H Johnson, Steven M Tommasini
{"title":"Evaluating the effect of voxel size on the accuracy of 3D volumetric analysis measurements of brain tumors.","authors":"Rithvik S Ghankot, Manwi Singh, Shelby T Desroches, Noemi Jester, Amit Mahajan, Samantha Lorr, Frank D Buono, Daniel H Wiznia, Michele H Johnson, Steven M Tommasini","doi":"10.3389/fradi.2025.1618261","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neurofibromatosis type 2 related Schwannomatosis (NF2-SWN) is a genetic disorder characterized by the growth of vestibular schwannomas (VS), which often leads to progressive hearing loss and vestibular dysfunction. Accurate volumetric assessment of VS tumors is crucial for effective monitoring and treatment planning. Since tumor growth dynamics are often subtle, the resolution of MRI scans plays a critical role in detecting small volumetric changes that inform clinical decisions. This study evaluates the impact of MRI voxel resolution on the accuracy of manual and AI-driven volumetric segmentation of VS in NF2-SWN patients.</p><p><strong>Methods: </strong>Ten patients with NF2-SWN, totaling 17 tumors, underwent high-resolution MRI scans with varying voxel sizes on different MRI machines at Yale New Haven Hospital. Tumors were segmented using both manual and AI-based methods, and the effect of voxel size on segmentation precision was quantified through volume measurements, Dice similarity coefficients, and Hausdorff distances.</p><p><strong>Results: </strong>Results indicate that larger voxel sizes (1.2 × 0.9 × 4.0 mm) significantly reduced segmentation accuracy when compared to smaller voxel sizes (0.5 × 0.5 × 0.8 mm). In addition, AI-based segmentation outperformed manual methods, particularly at larger voxel sizes.</p><p><strong>Discussion: </strong>These findings highlight the importance of optimizing voxel resolution for accurate tumor monitoring and suggest that AI-driven segmentation may improve consistency and precision in NF2-SWN tumor surveillance.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"5 ","pages":"1618261"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2025.1618261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Neurofibromatosis type 2 related Schwannomatosis (NF2-SWN) is a genetic disorder characterized by the growth of vestibular schwannomas (VS), which often leads to progressive hearing loss and vestibular dysfunction. Accurate volumetric assessment of VS tumors is crucial for effective monitoring and treatment planning. Since tumor growth dynamics are often subtle, the resolution of MRI scans plays a critical role in detecting small volumetric changes that inform clinical decisions. This study evaluates the impact of MRI voxel resolution on the accuracy of manual and AI-driven volumetric segmentation of VS in NF2-SWN patients.

Methods: Ten patients with NF2-SWN, totaling 17 tumors, underwent high-resolution MRI scans with varying voxel sizes on different MRI machines at Yale New Haven Hospital. Tumors were segmented using both manual and AI-based methods, and the effect of voxel size on segmentation precision was quantified through volume measurements, Dice similarity coefficients, and Hausdorff distances.

Results: Results indicate that larger voxel sizes (1.2 × 0.9 × 4.0 mm) significantly reduced segmentation accuracy when compared to smaller voxel sizes (0.5 × 0.5 × 0.8 mm). In addition, AI-based segmentation outperformed manual methods, particularly at larger voxel sizes.

Discussion: These findings highlight the importance of optimizing voxel resolution for accurate tumor monitoring and suggest that AI-driven segmentation may improve consistency and precision in NF2-SWN tumor surveillance.

Abstract Image

Abstract Image

Abstract Image

评估体素大小对脑肿瘤三维体积分析测量精度的影响。
2型神经纤维瘤病相关神经鞘瘤病(NF2-SWN)是一种以前庭神经鞘瘤(VS)生长为特征的遗传性疾病,常导致进行性听力丧失和前庭功能障碍。准确的VS肿瘤体积评估对于有效的监测和治疗计划至关重要。由于肿瘤生长动态通常是微妙的,MRI扫描的分辨率在检测小体积变化方面起着关键作用,为临床决策提供信息。本研究评估了MRI体素分辨率对NF2-SWN患者人工和人工智能驱动的VS体积分割准确性的影响。方法:10例NF2-SWN患者,共17个肿瘤,在耶鲁大学纽黑文医院的不同MRI机上进行了不同体素大小的高分辨率MRI扫描。采用人工和人工智能方法对肿瘤进行分割,并通过体积测量、Dice相似系数和Hausdorff距离量化体素大小对分割精度的影响。结果:结果表明,与较小的体素尺寸(0.5 × 0.5 × 0.8 mm)相比,较大的体素尺寸(1.2 × 0.9 × 4.0 mm)显著降低了分割精度。此外,基于人工智能的分割优于手动方法,特别是在较大的体素尺寸下。讨论:这些发现强调了优化体素分辨率对精确肿瘤监测的重要性,并表明人工智能驱动的分割可以提高NF2-SWN肿瘤监测的一致性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信