Damage processes in extended laser exposures using an in vitro model.

IF 0.9
Frontiers in ophthalmology Pub Date : 2025-08-08 eCollection Date: 2025-01-01 DOI:10.3389/fopht.2025.1435692
Nathaniel J Pope, Jin Ha, Madeline E Melzer, Priscilla Lopez, Amanda Tijerina, Gary D Noojin, Michael L Denton
{"title":"Damage processes in extended laser exposures using an <i>in vitro</i> model.","authors":"Nathaniel J Pope, Jin Ha, Madeline E Melzer, Priscilla Lopez, Amanda Tijerina, Gary D Noojin, Michael L Denton","doi":"10.3389/fopht.2025.1435692","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal pigment epithelial (RPE) cells are sensitive to both photothermal and photochemical damage when exposed to lasers with wavelengths associated with the retinal blue light hazard. Laser power density (irradiance) and exposure duration primarily dictate the damage mechanism. Relatively high irradiances and short exposure durations typically lead to melanin-dependent photothermal damage, whereas low irradiance and long duration exposures are required for photochemical pathways. However, little is known about damage mechanisms at intermediate irradiances and durations for pigmented cells. The current Z136.1-2022 laser safety standard from the American National Standards Institute (ANSI) does not consider combined photothermal and photochemical damage processes. In addition, the ANSI Z136.1 standard classifies photochemical damage as nonthermal. Here, we use extended laser exposure parameters in an <i>in vitro</i> RPE cell model (ATCC CRL-4000) to show that elevated temperatures accelerate photochemical damage mechanisms. In addition, for 447-nm exposure conditions leading to damage considered neither purely photothermal nor photochemical, there is a reduced requirement for the thermal component for cell death. Our results suggest the need to address safety for lasers with blue wavelength emission, as in ophthalmic devices.</p>","PeriodicalId":73096,"journal":{"name":"Frontiers in ophthalmology","volume":"5 ","pages":"1435692"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fopht.2025.1435692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal pigment epithelial (RPE) cells are sensitive to both photothermal and photochemical damage when exposed to lasers with wavelengths associated with the retinal blue light hazard. Laser power density (irradiance) and exposure duration primarily dictate the damage mechanism. Relatively high irradiances and short exposure durations typically lead to melanin-dependent photothermal damage, whereas low irradiance and long duration exposures are required for photochemical pathways. However, little is known about damage mechanisms at intermediate irradiances and durations for pigmented cells. The current Z136.1-2022 laser safety standard from the American National Standards Institute (ANSI) does not consider combined photothermal and photochemical damage processes. In addition, the ANSI Z136.1 standard classifies photochemical damage as nonthermal. Here, we use extended laser exposure parameters in an in vitro RPE cell model (ATCC CRL-4000) to show that elevated temperatures accelerate photochemical damage mechanisms. In addition, for 447-nm exposure conditions leading to damage considered neither purely photothermal nor photochemical, there is a reduced requirement for the thermal component for cell death. Our results suggest the need to address safety for lasers with blue wavelength emission, as in ophthalmic devices.

使用体外模型的长时间激光照射损伤过程。
视网膜色素上皮细胞(RPE)暴露在波长与视网膜蓝光危害相关的激光下,对光热和光化学损伤都很敏感。激光功率密度(辐照度)和照射时间主要决定了损伤机制。相对较高的辐照度和较短的暴露时间通常会导致黑色素依赖的光热损伤,而光化学途径需要低辐照度和长时间的暴露。然而,对于中等照射和持续时间对色素细胞的损伤机制知之甚少。目前美国国家标准协会(ANSI)的Z136.1-2022激光安全标准没有考虑光热和光化学复合损伤过程。此外,ANSI Z136.1标准将光化学损伤分类为非热损伤。在这里,我们在体外RPE细胞模型(ATCC CRL-4000)中使用扩展的激光暴露参数来显示高温加速光化学损伤机制。此外,在447纳米的暴露条件下,导致的损伤既不是纯粹的光热损伤,也不是纯粹的光化学损伤,细胞死亡对热成分的需求减少。我们的研究结果表明,需要解决蓝色波长激光发射的安全性问题,如在眼科设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信