Forecasting the diabetic retinopathy progression using generative adversarial networks.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Huiyu Qiao, Feilong Tang, Huanfen Zhou, Yun Cai, Kairou Guo, Jin Wang, Tong Ma, Lie Ju, Wei Feng, Zhiqiang Ma, Juan Chen, Yuan Luo, Bin Wang, Zongyuan Ge, Qiansu Yang
{"title":"Forecasting the diabetic retinopathy progression using generative adversarial networks.","authors":"Huiyu Qiao, Feilong Tang, Huanfen Zhou, Yun Cai, Kairou Guo, Jin Wang, Tong Ma, Lie Ju, Wei Feng, Zhiqiang Ma, Juan Chen, Yuan Luo, Bin Wang, Zongyuan Ge, Qiansu Yang","doi":"10.1038/s43856-025-01092-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic retinopathy (DR) is the leading cause of blindness worldwide, making early prediction of DR progression crucial for effectively preventing visual loss. This study introduces a prediction framework DRForecastGAN (Diabetic Retinopathy Forecast Generative Adversarial Network), and investigates its clinical value in predicting DR development.</p><p><strong>Methods: </strong>DRForecastGAN model, consisting of a generator, discriminator, and registration network, was trained, validated, and tested in training (12,852 images), internal validation (2734 images), and external test (8523 images) datasets. A pre-trained ResNet50 classification model identified the DR severity on synthetic images. The performance of the proposed DRForecastGAN model was compared with the CycleGAN and Pix2Pix models in image reality and DR severity of the synthesized fundus images by calculating Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and area under the curve (AUC).</p><p><strong>Results: </strong>DRForecastGAN model has the lowest FID, highest PSNR and highest SSIM on internal validation (FID: 27.3 vs. 32.8 vs. 34.4; PSNR: 25.3 vs. 17.0 vs. 16.9; SSIM: 0.93 vs. 0.79 vs. 0.65) and external test (FID: 37.6 vs.45.1 vs.48.4; PSNR: 20.7 vs.15.2 vs.14.7; SSIM: 0.86 vs.0.69 vs.0.63) datasets compared with Pix2Pix and CycleGAN models. In the prediction of DR severity, our DRForecastGAN model outperforms both Pix2Pix and CycleGAN models, achieving the highest AUC values on both internal validation (0.87 vs. 0.76 vs. 0.75) and external test (0.85 vs. 0.70 vs. 0.69) datasets.</p><p><strong>Conclusions: </strong>The proposed DRForecastGAN model can effectively visualize DR development by synthesizing future fundus images, offering potential utility for both treatment and ongoing monitoring of DR.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"368"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01092-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetic retinopathy (DR) is the leading cause of blindness worldwide, making early prediction of DR progression crucial for effectively preventing visual loss. This study introduces a prediction framework DRForecastGAN (Diabetic Retinopathy Forecast Generative Adversarial Network), and investigates its clinical value in predicting DR development.

Methods: DRForecastGAN model, consisting of a generator, discriminator, and registration network, was trained, validated, and tested in training (12,852 images), internal validation (2734 images), and external test (8523 images) datasets. A pre-trained ResNet50 classification model identified the DR severity on synthetic images. The performance of the proposed DRForecastGAN model was compared with the CycleGAN and Pix2Pix models in image reality and DR severity of the synthesized fundus images by calculating Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and area under the curve (AUC).

Results: DRForecastGAN model has the lowest FID, highest PSNR and highest SSIM on internal validation (FID: 27.3 vs. 32.8 vs. 34.4; PSNR: 25.3 vs. 17.0 vs. 16.9; SSIM: 0.93 vs. 0.79 vs. 0.65) and external test (FID: 37.6 vs.45.1 vs.48.4; PSNR: 20.7 vs.15.2 vs.14.7; SSIM: 0.86 vs.0.69 vs.0.63) datasets compared with Pix2Pix and CycleGAN models. In the prediction of DR severity, our DRForecastGAN model outperforms both Pix2Pix and CycleGAN models, achieving the highest AUC values on both internal validation (0.87 vs. 0.76 vs. 0.75) and external test (0.85 vs. 0.70 vs. 0.69) datasets.

Conclusions: The proposed DRForecastGAN model can effectively visualize DR development by synthesizing future fundus images, offering potential utility for both treatment and ongoing monitoring of DR.

Abstract Image

Abstract Image

Abstract Image

利用生成对抗网络预测糖尿病视网膜病变的进展。
背景:糖尿病视网膜病变(DR)是世界范围内致盲的主要原因,因此早期预测DR进展对于有效预防视力丧失至关重要。本研究引入糖尿病视网膜病变预测生成对抗网络(DRForecastGAN)预测框架,并探讨其在预测糖尿病视网膜病变发展中的临床价值。方法:DRForecastGAN模型由生成器、鉴别器和配准网络组成,在训练集(12,852张图像)、内部验证集(2734张图像)和外部测试集(8523张图像)上进行训练、验证和测试。预训练的ResNet50分类模型识别合成图像上的DR严重程度。通过计算fr起始距离(FID)、峰值信噪比(PSNR)、结构相似指数(SSIM)和曲线下面积(AUC),比较了DRForecastGAN模型与CycleGAN和Pix2Pix模型在图像真实感和合成眼底图像DR严重程度方面的性能。结果:与Pix2Pix和CycleGAN模型相比,DRForecastGAN模型在内部验证(FID: 27.3 vs. 32.8 vs. 34.4; PSNR: 25.3 vs. 17.0 vs. 16.9; SSIM: 0.93 vs. 0.79 vs. 0.65)和外部测试(FID: 37.6 vs.45.1 vs.48.4; PSNR: 20.7 vs.15.2 vs.14.7; SSIM: 0.86 vs.0.69 vs.0.63)数据集上具有最低的FID、最高的PSNR和最高的SSIM。在预测DR严重程度方面,我们的DRForecastGAN模型优于Pix2Pix和CycleGAN模型,在内部验证(0.87 vs. 0.76 vs. 0.75)和外部测试(0.85 vs. 0.70 vs. 0.69)数据集上都获得了最高的AUC值。结论:提出的DRForecastGAN模型可以通过合成未来眼底图像有效地可视化DR的发展,为DR的治疗和持续监测提供潜在的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信