{"title":"Federated Metadata-Constrained iRadonMAP Framework with Mutual Learning for All-in-One Computed Tomography Imaging.","authors":"Hao Wang, Xiaoyu Zhang, Hengtao Guo, Xuebin Ren, Shipeng Wang, Fenglei Fan, Jianhua Ma, Dong Zeng","doi":"10.34133/cbsystems.0376","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing use of computed tomography (CT), concerns about radiation dose have grown. Deep-learning-based methods have shown great promise in improving low-dose CT image quality while further reducing patient dose. However, most deep-learning-based methods are trained on vendor-specific CT datasets with varying imaging conditions and dose levels, which results in poor generalizability across vendors due to marked data heterogeneity. Moreover, the centralization of multicenter datasets is restricted by the high costs of data collection and privacy regulations. To overcome these challenges, we propose FedM2CT, a federated metadata-constrained method with mutual learning for all-in-one CT reconstruction. This method enables simultaneous reconstruction of multivendor CT images with different imaging geometries and sampling protocols in one framework. Specifically, FedM2CT consists of 3 modules: task-specific iRadonMAP (TS-iRadonMAP), condition-prompted mutual learning (CPML), and federated metadata learning (FMDL). TS-iRadonMAP performs task-specific low-dose reconstruction, CPML shares condition-prompted knowledge between clients and the server, and FMDL aggregates model parameters with a metamodel to effectively mitigate the effect of data heterogeneity. Extensive experiments under 3 different settings demonstrate that the proposed FedM2CT achieves outstanding results compared to other methods, both qualitatively and quantitatively, showing the potential to achieve the goal of all-in-one CT reconstruction with different low-dose tasks, i.e., low-milliampere-second, sparse-view, and limited-angle.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0376"},"PeriodicalIF":18.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing use of computed tomography (CT), concerns about radiation dose have grown. Deep-learning-based methods have shown great promise in improving low-dose CT image quality while further reducing patient dose. However, most deep-learning-based methods are trained on vendor-specific CT datasets with varying imaging conditions and dose levels, which results in poor generalizability across vendors due to marked data heterogeneity. Moreover, the centralization of multicenter datasets is restricted by the high costs of data collection and privacy regulations. To overcome these challenges, we propose FedM2CT, a federated metadata-constrained method with mutual learning for all-in-one CT reconstruction. This method enables simultaneous reconstruction of multivendor CT images with different imaging geometries and sampling protocols in one framework. Specifically, FedM2CT consists of 3 modules: task-specific iRadonMAP (TS-iRadonMAP), condition-prompted mutual learning (CPML), and federated metadata learning (FMDL). TS-iRadonMAP performs task-specific low-dose reconstruction, CPML shares condition-prompted knowledge between clients and the server, and FMDL aggregates model parameters with a metamodel to effectively mitigate the effect of data heterogeneity. Extensive experiments under 3 different settings demonstrate that the proposed FedM2CT achieves outstanding results compared to other methods, both qualitatively and quantitatively, showing the potential to achieve the goal of all-in-one CT reconstruction with different low-dose tasks, i.e., low-milliampere-second, sparse-view, and limited-angle.