Liquid biopsy diagnostics for non-small cell lung cancer via elucidation of tRNA signatures.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zhuokun Feng, Masaki Nasu, Gehan Devendra, Ayman A Abdul-Ghani, Owen T M Chan, Jeffrey A Borgia, Zitong Gao, Hanqiu Zhang, Yu Chen, Ting Gong, Gang Luo, Hua Yang, Lang Wu, Yuanyuan Fu, Youping Deng
{"title":"Liquid biopsy diagnostics for non-small cell lung cancer via elucidation of tRNA signatures.","authors":"Zhuokun Feng, Masaki Nasu, Gehan Devendra, Ayman A Abdul-Ghani, Owen T M Chan, Jeffrey A Borgia, Zitong Gao, Hanqiu Zhang, Yu Chen, Ting Gong, Gang Luo, Hua Yang, Lang Wu, Yuanyuan Fu, Youping Deng","doi":"10.1038/s43856-025-01068-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer, particularly non-small cell lung cancer (NSCLC), accounts for about 85% of all lung cancer cases and remains a major global health challenge. Traditional diagnostic methods, such as chest X-rays and low-dose CT scans, have limitations, including high false-positive rates, radiation risks, and the invasiveness of tissue biopsies. This study aims to develop a non-invasive liquid biopsy approach for early NSCLC diagnosis.</p><p><strong>Methods: </strong>We developed a machine-learning model to analyze small RNA sequencing data from 1446 tissue samples to identify a diagnostic tRNA signature. This signature was independently validated using the in-house data of 233 plasma exosome samples. Diagnostic performance was assessed using Area Under the Curve (AUC) metrics. Signature tRNAs were then evaluated across various clinical and demographic variables, with further survival analysis and functional studies to explore the molecular role of the signature tRNAs.</p><p><strong>Results: </strong>We identify a robust six-tRNA signature with strong diagnostic performance, achieving AUC values of 0.97 in discovery, 0.96 in hold-out validation, and 0.84 in independent validation. The signature effectively distinguishes cancerous from benign samples (AUC = 0.85) and consistently performs across clinical and demographic variables, with AUC values exceeding 0.80, particularly for early-stage lung cancer diagnosis. Additionally, three signature tRNAs demonstrate prognostic value for independent survival prediction. Functional studies suggest potential regulatory roles of specific tRNAs and their associated fragments in tumor metabolism pathways.</p><p><strong>Conclusions: </strong>This research underscores the diagnostic power of tRNA signature for NSCLC liquid biopsy and provides epigenetic insights that enhance our understanding of oncogenic molecular pathophysiology.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"364"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01068-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), accounts for about 85% of all lung cancer cases and remains a major global health challenge. Traditional diagnostic methods, such as chest X-rays and low-dose CT scans, have limitations, including high false-positive rates, radiation risks, and the invasiveness of tissue biopsies. This study aims to develop a non-invasive liquid biopsy approach for early NSCLC diagnosis.

Methods: We developed a machine-learning model to analyze small RNA sequencing data from 1446 tissue samples to identify a diagnostic tRNA signature. This signature was independently validated using the in-house data of 233 plasma exosome samples. Diagnostic performance was assessed using Area Under the Curve (AUC) metrics. Signature tRNAs were then evaluated across various clinical and demographic variables, with further survival analysis and functional studies to explore the molecular role of the signature tRNAs.

Results: We identify a robust six-tRNA signature with strong diagnostic performance, achieving AUC values of 0.97 in discovery, 0.96 in hold-out validation, and 0.84 in independent validation. The signature effectively distinguishes cancerous from benign samples (AUC = 0.85) and consistently performs across clinical and demographic variables, with AUC values exceeding 0.80, particularly for early-stage lung cancer diagnosis. Additionally, three signature tRNAs demonstrate prognostic value for independent survival prediction. Functional studies suggest potential regulatory roles of specific tRNAs and their associated fragments in tumor metabolism pathways.

Conclusions: This research underscores the diagnostic power of tRNA signature for NSCLC liquid biopsy and provides epigenetic insights that enhance our understanding of oncogenic molecular pathophysiology.

通过对tRNA特征的阐释,液体活检诊断非小细胞肺癌。
背景:肺癌,特别是非小细胞肺癌(NSCLC),约占所有肺癌病例的85%,仍然是一个主要的全球健康挑战。传统的诊断方法,如胸部x光片和低剂量CT扫描,有局限性,包括假阳性率高、辐射风险和组织活检的侵入性。本研究旨在开发一种非侵入性液体活检方法用于NSCLC的早期诊断。方法:我们开发了一个机器学习模型来分析来自1446个组织样本的小RNA测序数据,以识别诊断性tRNA特征。使用233个等离子体外泌体样本的内部数据独立验证了这一特征。使用曲线下面积(AUC)指标评估诊断效果。然后通过各种临床和人口学变量评估特征trna,并进行进一步的生存分析和功能研究,以探索特征trna的分子作用。结果:我们确定了具有强大诊断性能的稳健的六trna签名,发现验证的AUC值为0.97,保留验证的AUC值为0.96,独立验证的AUC值为0.84。该特征有效地区分了癌变样本和良性样本(AUC = 0.85),并且在临床和人口统计学变量中表现一致,AUC值超过0.80,特别是对于早期肺癌诊断。此外,三个特征trna显示了独立生存预测的预后价值。功能研究提示特异性trna及其相关片段在肿瘤代谢途径中的潜在调节作用。结论:本研究强调了tRNA标记在NSCLC液体活检中的诊断能力,并提供了表观遗传学见解,增强了我们对致癌分子病理生理学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信