Joint analysis of dispersed count-time data using a bivariate latent factor model.

IF 1.8 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Cornelis J Potgieter, Akihito Kamata, Yusuf Kara, Xin Qiao
{"title":"Joint analysis of dispersed count-time data using a bivariate latent factor model.","authors":"Cornelis J Potgieter, Akihito Kamata, Yusuf Kara, Xin Qiao","doi":"10.1111/bmsp.70005","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we explore parameter estimation for a joint count-time data model with a two-factor latent trait structure, representing accuracy and speed. Each count-time variable pair corresponds to a specific item on a measurement instrument, where each item consists of a fixed number of tasks. The count variable represents the number of successfully completed tasks and is modeled using a Beta-binomial distribution to account for potential over-dispersion. The time variable, representing the duration needed to complete the tasks, is modeled using a normal distribution on a logarithmic scale. To characterize the model structure, we derive marginal moments that inform a set of method-of-moments (MOM) estimators, which serve as initial values for maximum likelihood estimation (MLE) via the Monte Carlo Expectation-Maximization (MCEM) algorithm. Standard errors are estimated using both the observed information matrix and bootstrap resampling, with simulation results indicating superior performance of the bootstrap, especially near boundary values of the dispersion parameter. A comprehensive simulation study investigates estimator accuracy and computational efficiency. To demonstrate the methodology, we analyze oral reading fluency (ORF) data, showing substantial variation in item-level dispersion and providing evidence for the improved model fit of the Beta-binomial specification, assessed using standardized root mean square residuals (SRMSR).</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.70005","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore parameter estimation for a joint count-time data model with a two-factor latent trait structure, representing accuracy and speed. Each count-time variable pair corresponds to a specific item on a measurement instrument, where each item consists of a fixed number of tasks. The count variable represents the number of successfully completed tasks and is modeled using a Beta-binomial distribution to account for potential over-dispersion. The time variable, representing the duration needed to complete the tasks, is modeled using a normal distribution on a logarithmic scale. To characterize the model structure, we derive marginal moments that inform a set of method-of-moments (MOM) estimators, which serve as initial values for maximum likelihood estimation (MLE) via the Monte Carlo Expectation-Maximization (MCEM) algorithm. Standard errors are estimated using both the observed information matrix and bootstrap resampling, with simulation results indicating superior performance of the bootstrap, especially near boundary values of the dispersion parameter. A comprehensive simulation study investigates estimator accuracy and computational efficiency. To demonstrate the methodology, we analyze oral reading fluency (ORF) data, showing substantial variation in item-level dispersion and providing evidence for the improved model fit of the Beta-binomial specification, assessed using standardized root mean square residuals (SRMSR).

使用双变量潜在因子模型对分散计数时间数据进行联合分析。
在本研究中,我们探索了具有双因素潜在特征结构(代表准确性和速度)的联合计数时间数据模型的参数估计。每个计数时间变量对对应于测量仪器上的一个特定项目,其中每个项目由固定数量的任务组成。count变量表示成功完成任务的数量,并使用beta二项分布建模,以解释潜在的过度分散。时间变量表示完成任务所需的持续时间,使用对数尺度上的正态分布建模。为了表征模型结构,我们推导了边际矩,这些边际矩为一组矩法(MOM)估计器提供信息,这些估计器通过蒙特卡洛期望最大化(MCEM)算法作为最大似然估计(MLE)的初始值。使用观测到的信息矩阵和自举重采样来估计标准误差,仿真结果表明自举法具有优越的性能,特别是在色散参数的边界值附近。对估计器的精度和计算效率进行了全面的仿真研究。为了证明该方法,我们分析了口语阅读流畅性(ORF)数据,显示了项目水平分散的实质性变化,并为β二项规范的改进模型拟合提供了证据,使用标准化均方根残差(SRMSR)进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信