Reduced rank regression for mixed predictor and response variables.

IF 1.8 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mark de Rooij, Lorenza Cotugno, Roberta Siciliano
{"title":"Reduced rank regression for mixed predictor and response variables.","authors":"Mark de Rooij, Lorenza Cotugno, Roberta Siciliano","doi":"10.1111/bmsp.70004","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose the generalized mixed reduced rank regression method, GMR<sup>3</sup> for short. GMR<sup>3</sup> is a regression method for a mix of numeric, binary and ordinal response variables. The predictor variables can be a mix of binary, nominal, ordinal and numeric variables. For dealing with the categorical predictors we use optimal scaling. A majorization-minimization algorithm is derived for maximum likelihood estimation. A series of simulation studies is shown (Section 4) to evaluate the performance of the algorithm with different types of predictor and response variables. In Section 5, we briefly discuss the choices to make when applying the model the empirical data and give suggestions for supporting such choices. In a second simulation study (Section 6), we further study the behaviour of the model and algorithm in different scenarios for the true rank in relation to sample size. In Section 7, we show an application of GMR<sup>3</sup> using the Eurobarometer Surveys data set of 2023.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.70004","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose the generalized mixed reduced rank regression method, GMR3 for short. GMR3 is a regression method for a mix of numeric, binary and ordinal response variables. The predictor variables can be a mix of binary, nominal, ordinal and numeric variables. For dealing with the categorical predictors we use optimal scaling. A majorization-minimization algorithm is derived for maximum likelihood estimation. A series of simulation studies is shown (Section 4) to evaluate the performance of the algorithm with different types of predictor and response variables. In Section 5, we briefly discuss the choices to make when applying the model the empirical data and give suggestions for supporting such choices. In a second simulation study (Section 6), we further study the behaviour of the model and algorithm in different scenarios for the true rank in relation to sample size. In Section 7, we show an application of GMR3 using the Eurobarometer Surveys data set of 2023.

混合预测变量和反应变量的降低秩回归。
本文提出了广义混合降阶回归方法,简称GMR3。GMR3是一种混合数值、二进制和有序响应变量的回归方法。预测变量可以是二进制、标称、序数和数字变量的混合。在处理分类预测时,我们使用最优尺度。提出了一种极大似然估计的最大化-最小化算法。本文展示了一系列模拟研究(第4节),以评估使用不同类型的预测器和响应变量的算法的性能。在第5节中,我们简要地讨论了在应用经验数据模型时要做出的选择,并给出了支持这些选择的建议。在第二个模拟研究(第6节)中,我们进一步研究了模型和算法在不同情况下与样本量相关的真实秩的行为。在第7节中,我们使用2023年的Eurobarometer Surveys数据集展示了GMR3的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信