Tooth Completion and Reconstruction in Digital Orthodontics.

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hao Yu, Longdu Liu, Shuangmin Chen, Shiqing Xin, Changhe Tu
{"title":"Tooth Completion and Reconstruction in Digital Orthodontics.","authors":"Hao Yu, Longdu Liu, Shuangmin Chen, Shiqing Xin, Changhe Tu","doi":"10.1109/MCG.2025.3605266","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of digital orthodontics, dental models with complete roots are essential digital assets, particularly for visualization and treatment planning. However, intraoral scans typically capture only dental crowns, leaving roots missing. In this paper, we introduce a meticulously designed algorithmic pipeline to complete dental models while preserving crown geometry and mesh topology. Our pipeline begins with learning-based point cloud completion applied to existing dental crowns. We then reconstruct a complete tooth model, encompassing both the crown and root, to guide subsequent processing steps. Next, we restore the crown's original geometry and mesh topology using a strong Delaunay meshing structure; the correctness of this approach has been thoroughly established in existing literature. Finally, we optimize the transition region between crown and root using bi-harmonic smoothing. A key advantage of our approach is that the completed tooth model accurately maintains the geometry and mesh topology of the original crown, while also ensuring high-quality triangulation of dental roots.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2025.3605266","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of digital orthodontics, dental models with complete roots are essential digital assets, particularly for visualization and treatment planning. However, intraoral scans typically capture only dental crowns, leaving roots missing. In this paper, we introduce a meticulously designed algorithmic pipeline to complete dental models while preserving crown geometry and mesh topology. Our pipeline begins with learning-based point cloud completion applied to existing dental crowns. We then reconstruct a complete tooth model, encompassing both the crown and root, to guide subsequent processing steps. Next, we restore the crown's original geometry and mesh topology using a strong Delaunay meshing structure; the correctness of this approach has been thoroughly established in existing literature. Finally, we optimize the transition region between crown and root using bi-harmonic smoothing. A key advantage of our approach is that the completed tooth model accurately maintains the geometry and mesh topology of the original crown, while also ensuring high-quality triangulation of dental roots.

数字正畸的牙齿补全与重建。
在数字正畸领域,具有完整牙根的牙齿模型是必不可少的数字资产,特别是对于可视化和治疗计划。然而,口腔内扫描通常只捕获牙冠,而遗漏牙根。在本文中,我们介绍了一个精心设计的算法管道来完成牙齿模型,同时保留冠的几何形状和网格拓扑结构。我们的管道从基于学习的点云补全开始,应用于现有的牙冠。然后我们重建一个完整的牙齿模型,包括冠和根,以指导后续的处理步骤。接下来,我们使用强Delaunay网格结构恢复冠的原始几何形状和网格拓扑;这种方法的正确性已经在现有文献中得到了充分的证实。最后,我们利用双谐波平滑优化树冠和树根之间的过渡区域。我们的方法的一个关键优势是,完成的牙齿模型准确地保持了原始冠的几何形状和网格拓扑结构,同时也确保了高质量的牙根三角形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Graphics and Applications
IEEE Computer Graphics and Applications 工程技术-计算机:软件工程
CiteScore
3.20
自引率
5.60%
发文量
160
审稿时长
>12 weeks
期刊介绍: IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信