Pre-stimulus Microstates and Bodily Signals Independently Influence Perceptual Awareness at the Discrimination Threshold.

IF 2.9 3区 医学 Q3 CLINICAL NEUROLOGY
Viviana Leupin, Juliane Britz
{"title":"Pre-stimulus Microstates and Bodily Signals Independently Influence Perceptual Awareness at the Discrimination Threshold.","authors":"Viviana Leupin, Juliane Britz","doi":"10.1007/s10548-025-01139-6","DOIUrl":null,"url":null,"abstract":"<p><p>Perceptual awareness of threshold or multi-stable stimuli varies with the pre-stimulus global state of the brain as indexed by EEG microstates. Similarly, awareness also varies with cyclic fluctuations of visceral signals across the cardiac and the respiratory cycle. It remains to be investigated whether the momentary state of the brain contributes to awareness jointly or independently of the bodily phase. We used an orientation discrimination task to determine to what degree the subjective awareness of a visual threshold stimulus varied with the pre-stimulus microstate, cardiac and respiratory phase and whether the brain and body exerted a joint or independent influence on fluctuations of subjective awareness. We compared the pre-stimulus EEG microstates preceding correct aware and unaware trials for the cardiac and respiratory phase. Our findings indicate that the canonical Microstate D was more prevalent in the unaware compared to the aware condition, and the canonical Microstate A accounted for more variance during inhalation compared to exhalation. The pre-stimulus activation of Microstate D, which is anticorrelated with attentional networks preceded trials in which the stimulus was not perceived. Inhalation was instead associated with Microstate A, suggesting increased arousal during this phase. However, we observed no interaction between the bodily phase and awareness, suggesting that the states of the brain and the body exert independent influence on perceptual awareness at the discrimination threshold.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 5","pages":"62"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01139-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Perceptual awareness of threshold or multi-stable stimuli varies with the pre-stimulus global state of the brain as indexed by EEG microstates. Similarly, awareness also varies with cyclic fluctuations of visceral signals across the cardiac and the respiratory cycle. It remains to be investigated whether the momentary state of the brain contributes to awareness jointly or independently of the bodily phase. We used an orientation discrimination task to determine to what degree the subjective awareness of a visual threshold stimulus varied with the pre-stimulus microstate, cardiac and respiratory phase and whether the brain and body exerted a joint or independent influence on fluctuations of subjective awareness. We compared the pre-stimulus EEG microstates preceding correct aware and unaware trials for the cardiac and respiratory phase. Our findings indicate that the canonical Microstate D was more prevalent in the unaware compared to the aware condition, and the canonical Microstate A accounted for more variance during inhalation compared to exhalation. The pre-stimulus activation of Microstate D, which is anticorrelated with attentional networks preceded trials in which the stimulus was not perceived. Inhalation was instead associated with Microstate A, suggesting increased arousal during this phase. However, we observed no interaction between the bodily phase and awareness, suggesting that the states of the brain and the body exert independent influence on perceptual awareness at the discrimination threshold.

Abstract Image

Abstract Image

预刺激微观状态和身体信号独立影响知觉知觉的辨别阈值。
阈值或多稳定刺激的知觉意识随着刺激前大脑整体状态的变化而变化。同样,意识也随着内脏信号在心脏和呼吸循环中的周期性波动而变化。大脑的瞬间状态是否与身体阶段共同或独立地促进意识,还有待研究。我们使用定向辨别任务来确定视觉阈值刺激的主观意识随刺激前微状态、心脏和呼吸相变化的程度,以及大脑和身体是否对主观意识的波动产生联合或独立的影响。我们比较了刺激前的脑电图微状态前正确的意识和无意识的心脏和呼吸期试验。我们的研究结果表明,与意识状态相比,典型微状态D在无意识状态下更为普遍,而典型微状态A在吸入过程中比在呼气过程中更容易发生变化。与注意网络不相关的微状态D的刺激前激活先于未感知刺激的试验。相反,吸入与微状态A相关,表明在此阶段唤醒增加。然而,我们没有观察到身体阶段和意识之间的相互作用,这表明大脑和身体的状态对辨别阈值的知觉意识有独立的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信