Credibility Assessment of the Patient-Specific Modeling of the Aneurysmal Ascending Thoracic Aorta: Verification, Validation and Uncertainty Quantification.
Roberta Scuoppo, Chiara Catalano, Fabrizio Crascì, Salvatore Pasta
{"title":"Credibility Assessment of the Patient-Specific Modeling of the Aneurysmal Ascending Thoracic Aorta: Verification, Validation and Uncertainty Quantification.","authors":"Roberta Scuoppo, Chiara Catalano, Fabrizio Crascì, Salvatore Pasta","doi":"10.1007/s13239-025-00801-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Computational modeling holds promise in predicting patient-specific outcomes and guiding clinical decision-making. The patient-specific model forming the basis of a digital twin can be considered biomedical software, thereby necessitating trust in its predictive accuracy.</p><p><strong>Methods: </strong>This study applies the ASME V&V40 framework to demonstrate the credibility of patient-specific models of aneurysmal thoracic ascending aorta (ATAA) biomechanics. A comprehensive verification, validation, and uncertainty quantification process was performed to evaluate the accuracy of the patient-specific ATAA model.</p><p><strong>Results: </strong>After implementing the ASME V&V40 standard, the verification errors on the model inputs (i.e., material parameters and hemodynamic variables) resulted in relative errors (RE) < 1%. Validation and its uncertainty quantification of the output aneurysm diameter response showed area metric errors below 5% in the majority of cases, highlighting the accuracy of the patient-specific ATAA model against the clinical comparator. Uncertainties in wall stress predictions due to model inputs were also quantified by probability density functions. Sensitivity analysis revealed that the unknown value of aneurysm wall thickness drives the model output at the highest extent.</p><p><strong>Conclusions: </strong>These findings contribute to a standardized methodology for evaluating the credibility of patient-specific models, enhancing their utility in computer-based clinical decision support systems for managing patients with ATAAs.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00801-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Computational modeling holds promise in predicting patient-specific outcomes and guiding clinical decision-making. The patient-specific model forming the basis of a digital twin can be considered biomedical software, thereby necessitating trust in its predictive accuracy.
Methods: This study applies the ASME V&V40 framework to demonstrate the credibility of patient-specific models of aneurysmal thoracic ascending aorta (ATAA) biomechanics. A comprehensive verification, validation, and uncertainty quantification process was performed to evaluate the accuracy of the patient-specific ATAA model.
Results: After implementing the ASME V&V40 standard, the verification errors on the model inputs (i.e., material parameters and hemodynamic variables) resulted in relative errors (RE) < 1%. Validation and its uncertainty quantification of the output aneurysm diameter response showed area metric errors below 5% in the majority of cases, highlighting the accuracy of the patient-specific ATAA model against the clinical comparator. Uncertainties in wall stress predictions due to model inputs were also quantified by probability density functions. Sensitivity analysis revealed that the unknown value of aneurysm wall thickness drives the model output at the highest extent.
Conclusions: These findings contribute to a standardized methodology for evaluating the credibility of patient-specific models, enhancing their utility in computer-based clinical decision support systems for managing patients with ATAAs.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.