Unique Contributions of Dynamic Affect Indicators - Beyond Static Variability.

IF 3.5 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kenneth Koslowski, Jana Holtmann
{"title":"Unique Contributions of Dynamic Affect Indicators - Beyond Static Variability.","authors":"Kenneth Koslowski, Jana Holtmann","doi":"10.1080/00273171.2025.2545367","DOIUrl":null,"url":null,"abstract":"<p><p>Indicators of affect dynamics (IADs) capture temporal dependencies and instability in affective trajectories over time. However, the relevance of IADs for the prediction of time-invariant outcomes (e.g., depressive symptoms) was recently challenged due to results suggesting low predictive utility beyond intraindividual means and variances. We argue that these results may in part be explained by mathematical redundancies between IADs and static variability as well as the chosen modeling strategy. In three extensive simulation studies we investigate the accuracy and power for detecting non-null relations between IADs and an outcome variable in different relevant settings, illustrating the effect of the length of a time series, the presence of missing values or measurement error, as well as of erroneously fixing innovation variances to be equal across persons. We show that, if uncertainty in individual IAD estimates is not accounted for, relations between IADs (i.e., autoregressive effects) and a time-invariant outcome are underestimated even in large samples and propose the use of a latent multilevel one-step approach. In an empirical application we illustrate that the different modeling approaches can lead to different substantive conclusions regarding the role of negative affect inertia in the prediction of depressive symptoms.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-22"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2545367","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Indicators of affect dynamics (IADs) capture temporal dependencies and instability in affective trajectories over time. However, the relevance of IADs for the prediction of time-invariant outcomes (e.g., depressive symptoms) was recently challenged due to results suggesting low predictive utility beyond intraindividual means and variances. We argue that these results may in part be explained by mathematical redundancies between IADs and static variability as well as the chosen modeling strategy. In three extensive simulation studies we investigate the accuracy and power for detecting non-null relations between IADs and an outcome variable in different relevant settings, illustrating the effect of the length of a time series, the presence of missing values or measurement error, as well as of erroneously fixing innovation variances to be equal across persons. We show that, if uncertainty in individual IAD estimates is not accounted for, relations between IADs (i.e., autoregressive effects) and a time-invariant outcome are underestimated even in large samples and propose the use of a latent multilevel one-step approach. In an empirical application we illustrate that the different modeling approaches can lead to different substantive conclusions regarding the role of negative affect inertia in the prediction of depressive symptoms.

动态影响指标的独特贡献-超越静态变异性。
情感动态指标(IADs)捕捉情感轨迹随时间的时间依赖性和不稳定性。然而,IADs与预测时不变结果(如抑郁症状)的相关性最近受到了挑战,因为结果表明,除了个体内部均值和方差之外,预测效用很低。我们认为,这些结果可能部分地由IADs和静态变异性之间的数学冗余以及所选择的建模策略来解释。在三个广泛的模拟研究中,我们调查了在不同相关设置中检测IADs与结果变量之间非零关系的准确性和能力,说明了时间序列长度、缺失值或测量误差的存在以及错误地将创新方差固定为相等的影响。我们表明,如果不考虑个体IAD估计的不确定性,即使在大样本中,IAD(即自回归效应)与时不变结果之间的关系也会被低估,并建议使用潜在的多层次一步方法。在一个实证应用中,我们说明了不同的建模方法可以导致关于负面影响惯性在抑郁症状预测中的作用不同的实质性结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信