{"title":"Unique Contributions of Dynamic Affect Indicators - Beyond Static Variability.","authors":"Kenneth Koslowski, Jana Holtmann","doi":"10.1080/00273171.2025.2545367","DOIUrl":null,"url":null,"abstract":"<p><p>Indicators of affect dynamics (IADs) capture temporal dependencies and instability in affective trajectories over time. However, the relevance of IADs for the prediction of time-invariant outcomes (e.g., depressive symptoms) was recently challenged due to results suggesting low predictive utility beyond intraindividual means and variances. We argue that these results may in part be explained by mathematical redundancies between IADs and static variability as well as the chosen modeling strategy. In three extensive simulation studies we investigate the accuracy and power for detecting non-null relations between IADs and an outcome variable in different relevant settings, illustrating the effect of the length of a time series, the presence of missing values or measurement error, as well as of erroneously fixing innovation variances to be equal across persons. We show that, if uncertainty in individual IAD estimates is not accounted for, relations between IADs (i.e., autoregressive effects) and a time-invariant outcome are underestimated even in large samples and propose the use of a latent multilevel one-step approach. In an empirical application we illustrate that the different modeling approaches can lead to different substantive conclusions regarding the role of negative affect inertia in the prediction of depressive symptoms.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-22"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2545367","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Indicators of affect dynamics (IADs) capture temporal dependencies and instability in affective trajectories over time. However, the relevance of IADs for the prediction of time-invariant outcomes (e.g., depressive symptoms) was recently challenged due to results suggesting low predictive utility beyond intraindividual means and variances. We argue that these results may in part be explained by mathematical redundancies between IADs and static variability as well as the chosen modeling strategy. In three extensive simulation studies we investigate the accuracy and power for detecting non-null relations between IADs and an outcome variable in different relevant settings, illustrating the effect of the length of a time series, the presence of missing values or measurement error, as well as of erroneously fixing innovation variances to be equal across persons. We show that, if uncertainty in individual IAD estimates is not accounted for, relations between IADs (i.e., autoregressive effects) and a time-invariant outcome are underestimated even in large samples and propose the use of a latent multilevel one-step approach. In an empirical application we illustrate that the different modeling approaches can lead to different substantive conclusions regarding the role of negative affect inertia in the prediction of depressive symptoms.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.