{"title":"Droplet-Based Microfluidics in Single-Bacterium Analysis: Advancements in Cultivation, Detection, and Application.","authors":"Haiyan Ma, Yuewen Zhang, Ren Shen, Yanwei Jia","doi":"10.3390/bios15080535","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms exhibit remarkable diversity, making their comprehensive characterization essential for understanding ecosystem functioning and safeguarding human health. However, traditional culture-based methods entail inherent limitations for resolving microbial heterogeneity, isolating slow-growing microorganisms, and accessing uncultivated microbes. Conversely, droplet-based microfluidics enables a high-throughput and precise platform for single-bacterium manipulation by physically isolating individual cells within microdroplets. This technology presents a transformative approach to overcoming the constraints of conventional techniques. This review outlines the fundamental principles, recent research advances, and key application domains of droplet-based microfluidics, with a particular focus on innovations in single-bacterium encapsulation, sorting, cultivation, and functional analysis. Applications such as antibiotic susceptibility testing, enzyme-directed evolution screening, microbial interaction studies, and the cultivation of novel bacterial species are discussed, underscoring the technology's broad potential in microbiological research and biotechnology.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15080535","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms exhibit remarkable diversity, making their comprehensive characterization essential for understanding ecosystem functioning and safeguarding human health. However, traditional culture-based methods entail inherent limitations for resolving microbial heterogeneity, isolating slow-growing microorganisms, and accessing uncultivated microbes. Conversely, droplet-based microfluidics enables a high-throughput and precise platform for single-bacterium manipulation by physically isolating individual cells within microdroplets. This technology presents a transformative approach to overcoming the constraints of conventional techniques. This review outlines the fundamental principles, recent research advances, and key application domains of droplet-based microfluidics, with a particular focus on innovations in single-bacterium encapsulation, sorting, cultivation, and functional analysis. Applications such as antibiotic susceptibility testing, enzyme-directed evolution screening, microbial interaction studies, and the cultivation of novel bacterial species are discussed, underscoring the technology's broad potential in microbiological research and biotechnology.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.