Using Deep Learning to Choose Optimal Smoothing Values for Equating.

IF 1.2 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Chunyan Liu, Zhongmin Cui
{"title":"Using Deep Learning to Choose Optimal Smoothing Values for Equating.","authors":"Chunyan Liu, Zhongmin Cui","doi":"10.1177/01466216251363244","DOIUrl":null,"url":null,"abstract":"<p><p>Test developers typically use alternate test forms to protect the integrity of test scores. Because test forms may differ in difficulty, scores on different test forms are adjusted through a psychometrical procedure called equating. When conducting equating, psychometricians often apply smoothing methods to reduce random error of equating resulting from sampling. During the process, they compare plots of different smoothing degrees and choose the optimal value when using the cubic spline postsmoothing method. This manual process, however, could be automated with the help of deep learning-a machine learning technique commonly used for image classification. In this study, a convolutional neural network was trained using human-classified postsmoothing plots. The trained network was used to choose optimal smoothing values with empirical testing data, which were compared to human choices. The agreement rate between humans and the trained network was as large as 71%, suggesting the potential use of deep learning for choosing optimal smoothing values for equating.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251363244"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251363244","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Test developers typically use alternate test forms to protect the integrity of test scores. Because test forms may differ in difficulty, scores on different test forms are adjusted through a psychometrical procedure called equating. When conducting equating, psychometricians often apply smoothing methods to reduce random error of equating resulting from sampling. During the process, they compare plots of different smoothing degrees and choose the optimal value when using the cubic spline postsmoothing method. This manual process, however, could be automated with the help of deep learning-a machine learning technique commonly used for image classification. In this study, a convolutional neural network was trained using human-classified postsmoothing plots. The trained network was used to choose optimal smoothing values with empirical testing data, which were compared to human choices. The agreement rate between humans and the trained network was as large as 71%, suggesting the potential use of deep learning for choosing optimal smoothing values for equating.

利用深度学习选择最优的平滑值来求解方程。
测试开发人员通常使用替代测试表单来保护测试分数的完整性。由于测试形式可能在难度上有所不同,不同测试形式的分数会通过一种称为相等的心理测量程序进行调整。在进行等值时,心理测量学家通常采用平滑方法来减少抽样导致的等值随机误差。在此过程中,他们比较了不同平滑度的图,选择了三次样条后平滑方法的最优值。然而,这个手动过程可以在深度学习的帮助下自动化,深度学习是一种通常用于图像分类的机器学习技术。在本研究中,使用人工分类后平滑图来训练卷积神经网络。利用训练后的网络与经验测试数据选择最优平滑值,并与人工选择进行比较。人类和经过训练的网络之间的一致性高达71%,这表明深度学习在选择最佳平滑值进行相等方面的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信