{"title":"CAGs-Net: A Novel Adjacent-Context Network With Channel Attention Gate for 3D Brain Tumor Image Segmentation.","authors":"Qianqian Ye, Yuhu Shi, Shunjie Guo","doi":"10.1155/ijbi/6656059","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate brain tumor segmentation is essential for clinical decision-making, yet remains difficult to automate. Key obstacles include the small volume of lesions, their morphological diversity, poorly defined MRI boundaries, and nonuniform intensity profiles. Furthermore, while traditional segmentation approaches often focus on intralayer relevance, they frequently underutilize the rich semantic correlations between features extracted from adjacent network layers. Concurrently, classical attention mechanisms, while effective for highlighting salient regions, often lack explicit mechanisms for directing feature refinement along specific dimensions. To solve these problems, this paper presents CAGs-Net, a novel network that progressively constructs semantic dependencies between neighboring layers in the UNet hierarchy, enabling effective integration of local and global contextual information. Meanwhile, the channel attention gate was embedded within this adjacent-context network. These gates strategically fuse shallow appearance features and deep semantic information, leveraging channel-wise relationships to refine features by recalibrating voxel spatial responses. In addition, the hybrid loss combining generalized dice loss and binary cross-entropy loss was employed to avoid severe class imbalance inherent in lesion segmentation. Therefore, CAGs-Net uniquely combines adjacent-context modeling with channel attention gates to enhance feature refinement, outperforming traditional UNet-based methods, and the experimental results demonstrated that CAGs-Net shows better segmentation performance in comparison with some state-of-the-art methods for brain tumor image segmentation.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"6656059"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396912/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/6656059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate brain tumor segmentation is essential for clinical decision-making, yet remains difficult to automate. Key obstacles include the small volume of lesions, their morphological diversity, poorly defined MRI boundaries, and nonuniform intensity profiles. Furthermore, while traditional segmentation approaches often focus on intralayer relevance, they frequently underutilize the rich semantic correlations between features extracted from adjacent network layers. Concurrently, classical attention mechanisms, while effective for highlighting salient regions, often lack explicit mechanisms for directing feature refinement along specific dimensions. To solve these problems, this paper presents CAGs-Net, a novel network that progressively constructs semantic dependencies between neighboring layers in the UNet hierarchy, enabling effective integration of local and global contextual information. Meanwhile, the channel attention gate was embedded within this adjacent-context network. These gates strategically fuse shallow appearance features and deep semantic information, leveraging channel-wise relationships to refine features by recalibrating voxel spatial responses. In addition, the hybrid loss combining generalized dice loss and binary cross-entropy loss was employed to avoid severe class imbalance inherent in lesion segmentation. Therefore, CAGs-Net uniquely combines adjacent-context modeling with channel attention gates to enhance feature refinement, outperforming traditional UNet-based methods, and the experimental results demonstrated that CAGs-Net shows better segmentation performance in comparison with some state-of-the-art methods for brain tumor image segmentation.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics