{"title":"Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables.","authors":"Milica Lučić, Antonije Onjia","doi":"10.3390/jox15040125","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.