The Gut Microbiota Metabolite Urolithin B Mitigates Cholestatic Liver Injury in Mice via Modulating the Crosstalk Between PPARα, Nrf2, and NF-κB Signaling Pathways.
Hani M Alrawili, Mahmoud Elshal, Marwa S Serrya, Dina S El-Agamy
{"title":"The Gut Microbiota Metabolite Urolithin B Mitigates Cholestatic Liver Injury in Mice via Modulating the Crosstalk Between PPARα, Nrf2, and NF-κB Signaling Pathways.","authors":"Hani M Alrawili, Mahmoud Elshal, Marwa S Serrya, Dina S El-Agamy","doi":"10.3390/jox15040128","DOIUrl":null,"url":null,"abstract":"<p><p>Urolithin (Uro)-B, a gut microbiota metabolite of ellagic acid, has recently gained considerable attention due to its beneficial bioactivities. This study investigated the potential hepatoprotective effect of Uro-B against alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and explored the possible involved mechanisms. Mice were treated with Uro-B (50 and 100 mg/kg) for four days and received ANIT (75 mg/kg) once on the second day. Our data revealed that Uro-B reduced elevated serum transaminases, alkaline phosphatase, lactate dehydrogenase, and total bilirubin levels associated with ANIT injection. Histopathologically, Uro-B effectively ameliorated ANIT-induced disruption of the hepatic architecture as represented by repressed necro-inflammation and bile duct proliferation. Uro-B also maintained oxidant/antioxidant status that was dysregulated by ANIT. Mechanistically, Uro-B markedly activated Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling with subsequent upregulation of hepatic heme oxygenase-1 expression. On the other hand, Uro-B suppressed the ANIT-induced expression of nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Interestingly, Uro-B repressed peroxisome proliferator-activated receptor alpha (PPARα) expression in the liver. These findings indicate a promising hepatoprotective effect of Uro-B against ANIT-induced CLI in mice. Uro-B modulated the interplay between Keap1/Nrf2, NF-κB/TNF-α, and PPARα signaling pathways, resulting in powerful antioxidant and anti-inflammatory effects.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urolithin (Uro)-B, a gut microbiota metabolite of ellagic acid, has recently gained considerable attention due to its beneficial bioactivities. This study investigated the potential hepatoprotective effect of Uro-B against alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and explored the possible involved mechanisms. Mice were treated with Uro-B (50 and 100 mg/kg) for four days and received ANIT (75 mg/kg) once on the second day. Our data revealed that Uro-B reduced elevated serum transaminases, alkaline phosphatase, lactate dehydrogenase, and total bilirubin levels associated with ANIT injection. Histopathologically, Uro-B effectively ameliorated ANIT-induced disruption of the hepatic architecture as represented by repressed necro-inflammation and bile duct proliferation. Uro-B also maintained oxidant/antioxidant status that was dysregulated by ANIT. Mechanistically, Uro-B markedly activated Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling with subsequent upregulation of hepatic heme oxygenase-1 expression. On the other hand, Uro-B suppressed the ANIT-induced expression of nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Interestingly, Uro-B repressed peroxisome proliferator-activated receptor alpha (PPARα) expression in the liver. These findings indicate a promising hepatoprotective effect of Uro-B against ANIT-induced CLI in mice. Uro-B modulated the interplay between Keap1/Nrf2, NF-κB/TNF-α, and PPARα signaling pathways, resulting in powerful antioxidant and anti-inflammatory effects.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.