A machine learning tool with light-based image analysis for automatic classification of 3D pain behaviors.

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-09-15 Epub Date: 2025-08-27 DOI:10.1016/j.crmeth.2025.101145
Omer Barkai, Biyao Zhang, Bruna Lenfers Turnes, Maryam Arab, David A Yarmolinsky, Zihe Zhang, Lee B Barrett, Clifford J Woolf
{"title":"A machine learning tool with light-based image analysis for automatic classification of 3D pain behaviors.","authors":"Omer Barkai, Biyao Zhang, Bruna Lenfers Turnes, Maryam Arab, David A Yarmolinsky, Zihe Zhang, Lee B Barrett, Clifford J Woolf","doi":"10.1016/j.crmeth.2025.101145","DOIUrl":null,"url":null,"abstract":"<p><p>Detailed assessment of pain-related behaviors in animals is essential for both exploring pain mechanisms and evaluating analgesic efficacy. While pose estimation tools have advanced automated behavior analysis, current existing algorithms often do not account for an animal's body-part contact intensity with-and distance from-the surface, a critical nuance for measuring certain pain-related responses like paw withdrawal (\"flinching\"). These subtle responses continue to require time-consuming and subjective human scoring. Here, we present BAREfoot (behavior with automatic recognition and evaluation), a supervised machine learning (ML) algorithm that combines pose estimation with light-based analysis of body-part contact and elevation to automatically detect pain behaviors in freely moving mice. We show the utility and accuracy of this algorithm for capturing a range of pain-related behavioral bouts using a bottom-up animal behavior platform and its application for robust drug screening. This open-source algorithm is adaptable for detecting diverse behaviors across species and experimental platforms.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101145"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Detailed assessment of pain-related behaviors in animals is essential for both exploring pain mechanisms and evaluating analgesic efficacy. While pose estimation tools have advanced automated behavior analysis, current existing algorithms often do not account for an animal's body-part contact intensity with-and distance from-the surface, a critical nuance for measuring certain pain-related responses like paw withdrawal ("flinching"). These subtle responses continue to require time-consuming and subjective human scoring. Here, we present BAREfoot (behavior with automatic recognition and evaluation), a supervised machine learning (ML) algorithm that combines pose estimation with light-based analysis of body-part contact and elevation to automatically detect pain behaviors in freely moving mice. We show the utility and accuracy of this algorithm for capturing a range of pain-related behavioral bouts using a bottom-up animal behavior platform and its application for robust drug screening. This open-source algorithm is adaptable for detecting diverse behaviors across species and experimental platforms.

基于光的图像分析的机器学习工具,用于3D疼痛行为的自动分类。
详细评估动物的疼痛相关行为对于探索疼痛机制和评估镇痛效果至关重要。虽然姿势估计工具有先进的自动化行为分析,但目前现有的算法通常不能考虑动物身体部位与表面的接触强度和距离,这是测量某些与疼痛相关的反应(如爪子退缩)的关键细微差别。这些微妙的反应仍然需要耗时和主观的人类评分。在这里,我们提出了赤脚(带有自动识别和评估的行为),这是一种监督机器学习(ML)算法,它将姿势估计与基于光的身体部位接触和高度分析相结合,以自动检测自由移动小鼠的疼痛行为。我们展示了该算法的实用性和准确性,利用自下而上的动物行为平台捕获一系列与疼痛相关的行为发作,并将其应用于稳健的药物筛选。这种开源算法适用于检测不同物种和实验平台的不同行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信