Re-Epithelialisation in a Yorkshire Pig Full-Thickness Excisional Wound Model Is Associated With Keratinocyte Activation, Oxidative Stress, and Biomacromolecule Oxidation.

IF 3.4 3区 医学 Q2 CELL BIOLOGY
Dylan Tinney, John T Walker, Emily Truscott, Douglas W Hamilton
{"title":"Re-Epithelialisation in a Yorkshire Pig Full-Thickness Excisional Wound Model Is Associated With Keratinocyte Activation, Oxidative Stress, and Biomacromolecule Oxidation.","authors":"Dylan Tinney, John T Walker, Emily Truscott, Douglas W Hamilton","doi":"10.1111/wrr.70082","DOIUrl":null,"url":null,"abstract":"<p><p>Pig skin represents the best analogue for human skin both anatomically and physiologically, with this model used extensively for pre-clinical testing of therapeutics and biomaterials. However, the molecular processes underlying re-epithelialisation in pigs are still not well described compared to murine models. Our objective was to characterise the re-epithelialisation process in porcine full-thickness excisional wounds in Yorkshire pigs. Immunohistochemistry markers for keratinocyte differentiation, activation and oxidative stress were used at 7 days and 28 days post-wounding, and in healthy control skin to characterise protein expression. We show at day 7, re-epithelialisation is associated with reduced cytokeratin 10, E-cadherin and filaggrin and an increase in cytokeratin 14, cytokeratin 16 and cytokeratin 17. At day 28, cytokeratin 16 remained expressed, but cytokeratin 14 only associated with basal keratinocytes and cytokeratin 10 with suprabasal keratinocyte layers. At day 7, both phospho-nuclear factor kappa B and the antioxidant transcription factor nuclear factor-erythroid 2-related factor 2 show nuclear translocation at the wound edge, which is attenuated by day 28. Concomitant with these observations, we show that re-epithelialisation is associated with guanosine oxidation, protein nitration, and lipid peroxidation at both day 7 and 28. Our observations confirm the baseline expression profile of keratinocytes during normal healing of full-thickness excisional wounds in Yorkshire pigs. Characterisation of similar markers in human healing will improve our understanding of the validity of the Yorkshire pig model for use in the testing of therapeutics for impaired skin healing in humans.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":"33 5","pages":"e70082"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.70082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pig skin represents the best analogue for human skin both anatomically and physiologically, with this model used extensively for pre-clinical testing of therapeutics and biomaterials. However, the molecular processes underlying re-epithelialisation in pigs are still not well described compared to murine models. Our objective was to characterise the re-epithelialisation process in porcine full-thickness excisional wounds in Yorkshire pigs. Immunohistochemistry markers for keratinocyte differentiation, activation and oxidative stress were used at 7 days and 28 days post-wounding, and in healthy control skin to characterise protein expression. We show at day 7, re-epithelialisation is associated with reduced cytokeratin 10, E-cadherin and filaggrin and an increase in cytokeratin 14, cytokeratin 16 and cytokeratin 17. At day 28, cytokeratin 16 remained expressed, but cytokeratin 14 only associated with basal keratinocytes and cytokeratin 10 with suprabasal keratinocyte layers. At day 7, both phospho-nuclear factor kappa B and the antioxidant transcription factor nuclear factor-erythroid 2-related factor 2 show nuclear translocation at the wound edge, which is attenuated by day 28. Concomitant with these observations, we show that re-epithelialisation is associated with guanosine oxidation, protein nitration, and lipid peroxidation at both day 7 and 28. Our observations confirm the baseline expression profile of keratinocytes during normal healing of full-thickness excisional wounds in Yorkshire pigs. Characterisation of similar markers in human healing will improve our understanding of the validity of the Yorkshire pig model for use in the testing of therapeutics for impaired skin healing in humans.

约克郡猪全层切除伤口模型的再上皮化与角质细胞活化、氧化应激和生物大分子氧化有关。
猪皮在解剖学和生理学上都是人类皮肤的最佳模拟物,这种模型广泛用于治疗和生物材料的临床前测试。然而,与小鼠模型相比,猪再上皮化的分子过程仍然没有得到很好的描述。我们的目的是表征约克郡猪全层切除伤口的再上皮化过程。在受伤后7天和28天以及健康对照皮肤中,使用角化细胞分化、活化和氧化应激的免疫组织化学标志物来表征蛋白质表达。我们发现,在第7天,再上皮化与细胞角蛋白10、e-钙粘蛋白和聚丝蛋白的减少以及细胞角蛋白14、细胞角蛋白16和细胞角蛋白17的增加有关。第28天,细胞角蛋白16仍然表达,但细胞角蛋白14仅与基底角化细胞相关,细胞角蛋白10与基底上角化细胞层相关。第7天,磷酸化核因子kappa B和抗氧化转录因子核因子-红系2相关因子2在创面边缘均出现核易位,到第28天这种易位逐渐减弱。伴随着这些观察,我们发现在第7天和第28天,再上皮化与鸟苷氧化、蛋白质硝化和脂质过氧化有关。我们的观察证实了约克郡猪全层切除伤口正常愈合过程中角质形成细胞的基线表达谱。人类愈合中类似标记的特征将提高我们对约克郡猪模型的有效性的理解,该模型用于测试人类皮肤损伤愈合的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wound Repair and Regeneration
Wound Repair and Regeneration 医学-皮肤病学
CiteScore
5.90
自引率
3.40%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others. Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信