Langlang Zhang, Liying Gao, Huanbing Lu, Tianyu Liu, Shuang Zhang, Bin Tan, Xianbo Zheng, Xia Ye, Wei Wang, Haipeng Zhang, Xiaobei Wang, Zhiqian Li, Jiancan Feng, Jun Cheng
{"title":"PpBSBRL promotes adventitious root formation in peach via interaction and activation of PpSBRL.","authors":"Langlang Zhang, Liying Gao, Huanbing Lu, Tianyu Liu, Shuang Zhang, Bin Tan, Xianbo Zheng, Xia Ye, Wei Wang, Haipeng Zhang, Xiaobei Wang, Zhiqian Li, Jiancan Feng, Jun Cheng","doi":"10.1093/treephys/tpaf105","DOIUrl":null,"url":null,"abstract":"<p><p>LBD transcription factors play pivotal roles in regulating adventitious root formation in plants, with two key LBD genes, SBRL and BSBRL, constituting the highly conserved superlocus first reported in tomato. However, the members of LBD genes regulating adventitious root formation in peach trees have not yet been identified, and the regulatory mechanisms of the two key LBD genes remain to be elucidated. In this study, through genome-wide analysis of the LBD gene family in peach, we identified nine LBD genes clustered with these reported adventitious root-related LBDs, but only three superlocus-associated LBD genes (PpBSBRL, PpSBRL1 and PpSBRL2) revealed significant upregulation in expression level during the induction phase of peach adventitious rooting. Functional analysis demonstrated that PpBSBRL, PpSBRL1 and PpSBRL2 positively regulate both lateral and adventitious root formation in peach seedlings. Further investigation established a direct interaction between PpBSBRL and PpSBRL2. Notably, PpBSBRL specifically binds to the promoter region of PpSBRL2 (-1021 ~ -516 bp) and transcriptionally activates its expression. This study provides the first evidence of a regulatory mechanism between PpBSBRL and PpSBRL2 during adventitious root development, offering theoretical insights to address the challenge of poor rooting capacity in peach cuttings.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf105","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
LBD transcription factors play pivotal roles in regulating adventitious root formation in plants, with two key LBD genes, SBRL and BSBRL, constituting the highly conserved superlocus first reported in tomato. However, the members of LBD genes regulating adventitious root formation in peach trees have not yet been identified, and the regulatory mechanisms of the two key LBD genes remain to be elucidated. In this study, through genome-wide analysis of the LBD gene family in peach, we identified nine LBD genes clustered with these reported adventitious root-related LBDs, but only three superlocus-associated LBD genes (PpBSBRL, PpSBRL1 and PpSBRL2) revealed significant upregulation in expression level during the induction phase of peach adventitious rooting. Functional analysis demonstrated that PpBSBRL, PpSBRL1 and PpSBRL2 positively regulate both lateral and adventitious root formation in peach seedlings. Further investigation established a direct interaction between PpBSBRL and PpSBRL2. Notably, PpBSBRL specifically binds to the promoter region of PpSBRL2 (-1021 ~ -516 bp) and transcriptionally activates its expression. This study provides the first evidence of a regulatory mechanism between PpBSBRL and PpSBRL2 during adventitious root development, offering theoretical insights to address the challenge of poor rooting capacity in peach cuttings.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.