Kangyue Fu, Nan Lin, Yiwen Xu, En Huang, Raoli He, Zhixin Wu, Dianbo Qu, Xiaochun Chen, Tianwen Huang
{"title":"CDK5-mediated hyperphosphorylation of Tau217 impairs neuronal synaptic structure and exacerbates cognitive impairment in Alzheimer's disease.","authors":"Kangyue Fu, Nan Lin, Yiwen Xu, En Huang, Raoli He, Zhixin Wu, Dianbo Qu, Xiaochun Chen, Tianwen Huang","doi":"10.1038/s41398-025-03551-9","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have demonstrated that tau phosphorylated at threonine 217 (p-T217) in cerebrospinal fluid (CSF) or plasma is a potential biomarker for Alzheimer's disease (AD). However, the detailed pathological effects of elevated p-T217 and the mechanisms underlying T217 phosphorylation remain incompletely understood. In this study, we revealed a role of tau phosphorylated at T217 in AD. In 5 × FAD mice, increased p-T217 levels, correlated with CDK5 activation, were associated with neurite damage and neuronal apoptosis. Mice expressing a phospho-mimetic T217E mutant in the hippocampus exhibited significant learning impairments in the Morris water maze and Y-Maze test, along with reduced levels of the synaptic proteins Drebrin and PSD95. Electron microscopy revealed severe synaptic and microtubules damage in these mice, along with disrupted axonal structures confirmed by Golgi staining. Additionally, hyperactivation of CDK5 through p25 overexpression increased T217 phosphorylation, whereas CDK5 inactivation reduced it. The study concludes that CDK5 mediated Tau phosphorylation at T217 contributes to synaptic damage and cognitive deficits, highlighting it as a potential therapeutic target for AD.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"302"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03551-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have demonstrated that tau phosphorylated at threonine 217 (p-T217) in cerebrospinal fluid (CSF) or plasma is a potential biomarker for Alzheimer's disease (AD). However, the detailed pathological effects of elevated p-T217 and the mechanisms underlying T217 phosphorylation remain incompletely understood. In this study, we revealed a role of tau phosphorylated at T217 in AD. In 5 × FAD mice, increased p-T217 levels, correlated with CDK5 activation, were associated with neurite damage and neuronal apoptosis. Mice expressing a phospho-mimetic T217E mutant in the hippocampus exhibited significant learning impairments in the Morris water maze and Y-Maze test, along with reduced levels of the synaptic proteins Drebrin and PSD95. Electron microscopy revealed severe synaptic and microtubules damage in these mice, along with disrupted axonal structures confirmed by Golgi staining. Additionally, hyperactivation of CDK5 through p25 overexpression increased T217 phosphorylation, whereas CDK5 inactivation reduced it. The study concludes that CDK5 mediated Tau phosphorylation at T217 contributes to synaptic damage and cognitive deficits, highlighting it as a potential therapeutic target for AD.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.