Ying Xia, Tao Zhang, Xiaokun Ni, Ying Zhu, Qian Chen, Anfu Bamu, Huan Dai, Xinda Lin
{"title":"Engineered RNA nanostructures for scalable and efficient RNAi-based pesticides.","authors":"Ying Xia, Tao Zhang, Xiaokun Ni, Ying Zhu, Qian Chen, Anfu Bamu, Huan Dai, Xinda Lin","doi":"10.1016/j.tibtech.2025.07.027","DOIUrl":null,"url":null,"abstract":"<p><p>Double-stranded RNA (dsRNA)-based pesticides face challenges in stability, scalability, efficient uptake, and broad applicability. Here, we present self-assembled RNA nanostructures (SARNs), engineered to load pools of functional siRNAs with motifs that enhance hydrophobicity and elasticity, and enable both immediate and sustained siRNA release for efficient RNAi. SARNs improve RNA stability and delivery in plants and in model pests with chewing mouthparts (Tribolium castaneum) and piercing-sucking mouthparts (Nilaparvata lugens). Compared with dsRNA, SARNs demonstrated superior RNAi efficiency in T. castaneum and N. lugens, achieving significantly higher downregulation efficacy and mortality in both species. In addition, SARNs, which self-assemble from single-stranded (ss)RNA molecules, can be transcribed in Escherichia coli for scalable production. We further establish a framework for the laboratory-to-field transition of SARNs. This engineered RNA platform offers an efficient, scalable, cost-effective solution for RNA-based gene silencing, advancing applications in agriculture and biomedicine.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.07.027","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Double-stranded RNA (dsRNA)-based pesticides face challenges in stability, scalability, efficient uptake, and broad applicability. Here, we present self-assembled RNA nanostructures (SARNs), engineered to load pools of functional siRNAs with motifs that enhance hydrophobicity and elasticity, and enable both immediate and sustained siRNA release for efficient RNAi. SARNs improve RNA stability and delivery in plants and in model pests with chewing mouthparts (Tribolium castaneum) and piercing-sucking mouthparts (Nilaparvata lugens). Compared with dsRNA, SARNs demonstrated superior RNAi efficiency in T. castaneum and N. lugens, achieving significantly higher downregulation efficacy and mortality in both species. In addition, SARNs, which self-assemble from single-stranded (ss)RNA molecules, can be transcribed in Escherichia coli for scalable production. We further establish a framework for the laboratory-to-field transition of SARNs. This engineered RNA platform offers an efficient, scalable, cost-effective solution for RNA-based gene silencing, advancing applications in agriculture and biomedicine.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).