Sarah Chaib, Elise Levigoureux, Sandrine Bouvard, Caroline Bouillot, Benjamin Vidal, Anthony Fourier, Adrian Newman-Tancredi, Luc Zimmer
{"title":"[<sup>18</sup>F]FDG PET metabolic patterns of the rapid-acting antidepressant effects of NLX-101, a 5-HT<sub>1A</sub> receptor biased agonist.","authors":"Sarah Chaib, Elise Levigoureux, Sandrine Bouvard, Caroline Bouillot, Benjamin Vidal, Anthony Fourier, Adrian Newman-Tancredi, Luc Zimmer","doi":"10.1038/s41398-025-03572-4","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid-acting antidepressants (RAADs) such as ketamine are currently under development. The aim of this study is to characterize the neural circuits affected by ketamine and NLX-101, a selective 5-HT<sub>1A</sub> receptor biased agonist which has shown promising effects, by using [<sup>18</sup>F]FDG PET imaging in rats that had received chronic administration of corticosterone (CORT), a model of anxiety-depression. In a longitudinal study, regional changes in brain activity were investigated in 24 selected CORT rats. Each animal underwent PET scans in 3 conditions, i.e. with ketamine (10 mg/kg), NLX-101 (0.16 mg/kg) or saline on day 0 and five days later to assess sustained effects. The anxious-depressive phenotype produced by CORT was supported by behavioural and biological observations. Changes in [<sup>18</sup>F]FDG uptake were determined using voxel-based and region of interest analyses. Metabolic connectivity analysis was also performed to investigate the acute and delayed effects of the treatments. Voxel-based and region-of-interest analyses showed marked hypometabolism in regions implicated in depression, particularly cingulate cortex (-7%) and lateral septum (-9%) as well as the striatum (-10%). Acute effects of NLX-101 and ketamine were observed in the lateral septum, resulting in an increase in brain glucose metabolism (p < 0,05). Interestingly, connectivity analyses also showed effects of NLX-101 in the frontal cortex, the thalamus and amygdala (p < 0.05), suggesting that the two molecules converge on common brain regions. This study is the first to show brain activation patterns of RAADs in a CORT rat model by functional PET imaging. NLX-101 appears to exert antidepressant effects by preferentially activating postsynaptic 5-HT<sub>1A</sub> heteroreceptors in primary regions common to ketamine. These results support investigation of cortical 5-HT<sub>1A</sub> receptors as a target for new generation biased agonist antidepressants.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"336"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03572-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid-acting antidepressants (RAADs) such as ketamine are currently under development. The aim of this study is to characterize the neural circuits affected by ketamine and NLX-101, a selective 5-HT1A receptor biased agonist which has shown promising effects, by using [18F]FDG PET imaging in rats that had received chronic administration of corticosterone (CORT), a model of anxiety-depression. In a longitudinal study, regional changes in brain activity were investigated in 24 selected CORT rats. Each animal underwent PET scans in 3 conditions, i.e. with ketamine (10 mg/kg), NLX-101 (0.16 mg/kg) or saline on day 0 and five days later to assess sustained effects. The anxious-depressive phenotype produced by CORT was supported by behavioural and biological observations. Changes in [18F]FDG uptake were determined using voxel-based and region of interest analyses. Metabolic connectivity analysis was also performed to investigate the acute and delayed effects of the treatments. Voxel-based and region-of-interest analyses showed marked hypometabolism in regions implicated in depression, particularly cingulate cortex (-7%) and lateral septum (-9%) as well as the striatum (-10%). Acute effects of NLX-101 and ketamine were observed in the lateral septum, resulting in an increase in brain glucose metabolism (p < 0,05). Interestingly, connectivity analyses also showed effects of NLX-101 in the frontal cortex, the thalamus and amygdala (p < 0.05), suggesting that the two molecules converge on common brain regions. This study is the first to show brain activation patterns of RAADs in a CORT rat model by functional PET imaging. NLX-101 appears to exert antidepressant effects by preferentially activating postsynaptic 5-HT1A heteroreceptors in primary regions common to ketamine. These results support investigation of cortical 5-HT1A receptors as a target for new generation biased agonist antidepressants.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.