Modelling the Bioaccumulation of Ciguatoxins in Parrotfish on the Great Barrier Reef Reveals Why Biomagnification Is Not a Property of Ciguatoxin Food Chains.
{"title":"Modelling the Bioaccumulation of Ciguatoxins in Parrotfish on the Great Barrier Reef Reveals Why Biomagnification Is Not a Property of Ciguatoxin Food Chains.","authors":"Michael J Holmes, Richard J Lewis","doi":"10.3390/toxins17080380","DOIUrl":null,"url":null,"abstract":"<p><p>We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 cell/cm<sup>2</sup>) densities of <i>Gambierdiscus</i>/<i>Fukuyoa</i> species (hereafter collectively referred to as <i>Gambierdiscus</i>) producing known concentrations of CTX are unlikely to be a risk of producing ciguateric fishes on the Great Barrier Reef unless CTX can accumulate and be retained in parrotfish over many months. Cell densities on turf algae equivalent to 10 <i>Gambierdiscus</i>/cm<sup>2</sup> producing known maximum concentrations of Pacific-CTX-4 (0.6 pg P-CTX-4/cell) are more difficult to assess but could be a risk. This cell density may be a higher risk for parrotfish than we previously suggested for production of ciguateric groupers (third-trophic-level predators) since second-trophic-level fishes can accumulate CTX loads without the subsequent losses that occur between trophic levels. Our analysis suggests that the ratios of parrotfish length-to-area grazed and weight-to-area grazed scale differently (allometrically), where the area grazed is a proxy for the number of <i>Gambierdiscus</i> consumed and hence proportional to toxin accumulation. Such scaling can help explain fish size-toxicity relationships within and between trophic levels for ciguateric fishes. Our modelling reveals that CTX bioaccumulates but does not necessarily biomagnify in food chains, with the relative enrichment and depletion rates of CTX varying with fish size and/or trophic level through an interplay of local and regional food chain influences. Our numerical model for the bioaccumulation and transfer of CTX across food chains helps conceptualize the development of ciguateric fishes by comparing scenarios that reveal limiting steps in producing ciguateric fish and focuses attention on the relative contributions from each part of the food chain rather than only on single components, such as CTX production.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17080380","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 cell/cm2) densities of Gambierdiscus/Fukuyoa species (hereafter collectively referred to as Gambierdiscus) producing known concentrations of CTX are unlikely to be a risk of producing ciguateric fishes on the Great Barrier Reef unless CTX can accumulate and be retained in parrotfish over many months. Cell densities on turf algae equivalent to 10 Gambierdiscus/cm2 producing known maximum concentrations of Pacific-CTX-4 (0.6 pg P-CTX-4/cell) are more difficult to assess but could be a risk. This cell density may be a higher risk for parrotfish than we previously suggested for production of ciguateric groupers (third-trophic-level predators) since second-trophic-level fishes can accumulate CTX loads without the subsequent losses that occur between trophic levels. Our analysis suggests that the ratios of parrotfish length-to-area grazed and weight-to-area grazed scale differently (allometrically), where the area grazed is a proxy for the number of Gambierdiscus consumed and hence proportional to toxin accumulation. Such scaling can help explain fish size-toxicity relationships within and between trophic levels for ciguateric fishes. Our modelling reveals that CTX bioaccumulates but does not necessarily biomagnify in food chains, with the relative enrichment and depletion rates of CTX varying with fish size and/or trophic level through an interplay of local and regional food chain influences. Our numerical model for the bioaccumulation and transfer of CTX across food chains helps conceptualize the development of ciguateric fishes by comparing scenarios that reveal limiting steps in producing ciguateric fish and focuses attention on the relative contributions from each part of the food chain rather than only on single components, such as CTX production.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.