Implementing response-adaptive designs when responses are missing: Impute or ignore?

IF 1.9 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Mia S Tackney, Sofía S Villar
{"title":"Implementing response-adaptive designs when responses are missing: Impute or ignore?","authors":"Mia S Tackney, Sofía S Villar","doi":"10.1177/09622802251366843","DOIUrl":null,"url":null,"abstract":"<p><p>Missing data is a widespread issue in clinical trials, but is particularly problematic for digital health interventions where disengagement is common and outcomes are likely to be missing not at random (MNAR). Trials that use response-adaptive designs need to handle missingness online and not simply at the end of the trial. We propose a novel online imputation strategy which allows previous imputations to be re-imputed given updated estimates of success probabilities. We additionally consider: (i) truncation of deterministic algorithms to prevent extreme realised treatment imbalance and (ii) changing the random component of semi-randomised algorithms. Through a simulation study based on a trial for a digital smoking cessation intervention, we illustrate how the strategy for handling missing responses can affect the exploration-exploitation tradeoff and the bias of the estimated success probabilities at the end of the trial. In the settings explored, we found that the exploration-exploitation tradeoff is affected particularly when arms have very different rates of missingness and we identified combinations of response-adaptive designs and missingness strategies that are particularly problematic. Further, we show that estimated success probabilities at the end of the trial can be biased not only due to optimistic sampling, but potentially also due to an MNAR missingness mechanism.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251366843"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251366843","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Missing data is a widespread issue in clinical trials, but is particularly problematic for digital health interventions where disengagement is common and outcomes are likely to be missing not at random (MNAR). Trials that use response-adaptive designs need to handle missingness online and not simply at the end of the trial. We propose a novel online imputation strategy which allows previous imputations to be re-imputed given updated estimates of success probabilities. We additionally consider: (i) truncation of deterministic algorithms to prevent extreme realised treatment imbalance and (ii) changing the random component of semi-randomised algorithms. Through a simulation study based on a trial for a digital smoking cessation intervention, we illustrate how the strategy for handling missing responses can affect the exploration-exploitation tradeoff and the bias of the estimated success probabilities at the end of the trial. In the settings explored, we found that the exploration-exploitation tradeoff is affected particularly when arms have very different rates of missingness and we identified combinations of response-adaptive designs and missingness strategies that are particularly problematic. Further, we show that estimated success probabilities at the end of the trial can be biased not only due to optimistic sampling, but potentially also due to an MNAR missingness mechanism.

在缺少响应时实现响应自适应设计:归咎于还是忽略?
在临床试验中,数据缺失是一个普遍存在的问题,但对于数字健康干预措施来说,这一问题尤其严重,因为脱离参与是常见的,而且结果可能不是随机缺失的(MNAR)。使用自适应反应设计的试验需要在线处理缺失,而不是简单地在试验结束时处理。我们提出了一种新的在线估算策略,该策略允许在给定更新的成功概率估计的情况下重新估算先前的估算。我们还考虑:(i)截断确定性算法以防止极端实现的处理不平衡;(ii)改变半随机化算法的随机成分。通过一项基于数字戒烟干预试验的模拟研究,我们说明了处理缺失响应的策略如何影响探索-开发权衡以及试验结束时估计成功概率的偏差。在探索的设置中,我们发现,当武器的失踪率非常不同时,探索-开发权衡受到影响,我们确定了反应适应设计和失踪率策略的组合,这是特别有问题的。此外,我们表明,试验结束时估计的成功概率不仅由于乐观抽样,而且可能由于MNAR缺失机制而存在偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信