CardioFit: a WebGL-based tool for fast and efficient parametrization of cardiac action potential models to fit user-provided data.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-08-27 eCollection Date: 2025-08-01 DOI:10.1098/rsos.250048
Darby I Cairns, Maxfield Roth Comstock, Flavio H Fenton, Elizabeth M Cherry
{"title":"CardioFit: a WebGL-based tool for fast and efficient parametrization of cardiac action potential models to fit user-provided data.","authors":"Darby I Cairns, Maxfield Roth Comstock, Flavio H Fenton, Elizabeth M Cherry","doi":"10.1098/rsos.250048","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac action potential models allow examination of a variety of cardiac dynamics, including how behaviour may change under specific interventions. To study a specific scenario, including patient-specific cases, model parameter sets must be found that accurately reproduce the dynamics of interest. To facilitate this complex and time-consuming process, we present CardioFit, an interactive browser-based tool that uses the particle swarm optimization (PSO) algorithm implemented in JavaScript and takes advantage of the WebGL API for hardware acceleration. Our tool allows rapid customization and can find low-error fittings to user-provided voltage time series or action potential duration data from multiple cycle lengths in a few iterations (10-32), corresponding to a runtime of a few seconds on most machines. Additionally, our tool focuses on ease of use and flexibility, providing a webpage interface that allows users to select a subset of parameters to fit, set the range of values each parameter is allowed to assume, and control the PSO algorithm hyperparameters. We demonstrate our tool's utility by fitting a variety of models to different datasets, showing how convergence is affected by model choice, dataset properties and PSO algorithmic settings, and explaining new insights gained about the physiological and dynamical roles of the model parameters.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 8","pages":"250048"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250048","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac action potential models allow examination of a variety of cardiac dynamics, including how behaviour may change under specific interventions. To study a specific scenario, including patient-specific cases, model parameter sets must be found that accurately reproduce the dynamics of interest. To facilitate this complex and time-consuming process, we present CardioFit, an interactive browser-based tool that uses the particle swarm optimization (PSO) algorithm implemented in JavaScript and takes advantage of the WebGL API for hardware acceleration. Our tool allows rapid customization and can find low-error fittings to user-provided voltage time series or action potential duration data from multiple cycle lengths in a few iterations (10-32), corresponding to a runtime of a few seconds on most machines. Additionally, our tool focuses on ease of use and flexibility, providing a webpage interface that allows users to select a subset of parameters to fit, set the range of values each parameter is allowed to assume, and control the PSO algorithm hyperparameters. We demonstrate our tool's utility by fitting a variety of models to different datasets, showing how convergence is affected by model choice, dataset properties and PSO algorithmic settings, and explaining new insights gained about the physiological and dynamical roles of the model parameters.

Abstract Image

Abstract Image

Abstract Image

CardioFit:一个基于webgl的工具,用于快速有效地对心脏动作电位模型进行参数化,以适应用户提供的数据。
心脏动作电位模型允许检查各种心脏动力学,包括行为如何在特定干预下改变。为了研究特定的场景,包括患者特定的病例,必须找到能够准确再现感兴趣的动态的模型参数集。为了简化这个复杂而耗时的过程,我们提出了CardioFit,这是一个基于浏览器的交互式工具,它使用JavaScript实现的粒子群优化(PSO)算法,并利用WebGL API进行硬件加速。我们的工具允许快速定制,并且可以在几次迭代(10-32)中找到用户提供的多个周期长度的电压时间序列或动作电位持续时间数据的低误差配件,对应于大多数机器的几秒钟运行时间。此外,我们的工具注重易用性和灵活性,提供了一个网页界面,允许用户选择一个参数子集来拟合,设置每个参数允许假设的值范围,并控制粒子群算法超参数。我们通过将各种模型拟合到不同的数据集来展示我们的工具的实用性,展示了收敛如何受到模型选择,数据集属性和PSO算法设置的影响,并解释了关于模型参数的生理和动态作用的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信