Joshua C Foster, Bach Pham, Ryan Pham, Patrick Ryan, Nhu Tong, Jacqueline Sharp, Satomi Inaba-Inoue, Jie Liang, Konstantinos Beis, Min Chen
{"title":"Barrel expansion of outer membrane protein G nanopore through β-hairpin duplication.","authors":"Joshua C Foster, Bach Pham, Ryan Pham, Patrick Ryan, Nhu Tong, Jacqueline Sharp, Satomi Inaba-Inoue, Jie Liang, Konstantinos Beis, Min Chen","doi":"10.1002/pro.70203","DOIUrl":null,"url":null,"abstract":"<p><p>Outer membrane β-barrel proteins (OMPs) are channels found in the outer membranes of Gram-negative bacteria characterized by a stable and diverse barrel architecture, which has made them attractive for nanopore sensing applications. Here, we systematically investigated the feasibility of expanding outer membrane protein G (OmpG) from its native 14-stranded β-barrel to an enhanced conductance variant by independently duplicating each of its seven hairpin units and inserting them downstream of their endogenous positions. Most combinations did not increase pore diameter, but duplication of the terminal seventh hairpin exhibited a rare population of pores with enhanced conductance, suggesting barrel enlargement. Further engineering efforts to optimize the terminal β-turn sequence have resulted in up to 50% of pores with increased conductance. Importantly, the enlarged pores retained the sensing functionality of the original scaffold, highlighting the potential of this approach for developing β-barrel OMP sensors with tunable dimensions.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 8","pages":"e70203"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70203","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Outer membrane β-barrel proteins (OMPs) are channels found in the outer membranes of Gram-negative bacteria characterized by a stable and diverse barrel architecture, which has made them attractive for nanopore sensing applications. Here, we systematically investigated the feasibility of expanding outer membrane protein G (OmpG) from its native 14-stranded β-barrel to an enhanced conductance variant by independently duplicating each of its seven hairpin units and inserting them downstream of their endogenous positions. Most combinations did not increase pore diameter, but duplication of the terminal seventh hairpin exhibited a rare population of pores with enhanced conductance, suggesting barrel enlargement. Further engineering efforts to optimize the terminal β-turn sequence have resulted in up to 50% of pores with increased conductance. Importantly, the enlarged pores retained the sensing functionality of the original scaffold, highlighting the potential of this approach for developing β-barrel OMP sensors with tunable dimensions.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).