Barrel expansion of outer membrane protein G nanopore through β-hairpin duplication.

IF 5.2 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-08-01 DOI:10.1002/pro.70203
Joshua C Foster, Bach Pham, Ryan Pham, Patrick Ryan, Nhu Tong, Jacqueline Sharp, Satomi Inaba-Inoue, Jie Liang, Konstantinos Beis, Min Chen
{"title":"Barrel expansion of outer membrane protein G nanopore through β-hairpin duplication.","authors":"Joshua C Foster, Bach Pham, Ryan Pham, Patrick Ryan, Nhu Tong, Jacqueline Sharp, Satomi Inaba-Inoue, Jie Liang, Konstantinos Beis, Min Chen","doi":"10.1002/pro.70203","DOIUrl":null,"url":null,"abstract":"<p><p>Outer membrane β-barrel proteins (OMPs) are channels found in the outer membranes of Gram-negative bacteria characterized by a stable and diverse barrel architecture, which has made them attractive for nanopore sensing applications. Here, we systematically investigated the feasibility of expanding outer membrane protein G (OmpG) from its native 14-stranded β-barrel to an enhanced conductance variant by independently duplicating each of its seven hairpin units and inserting them downstream of their endogenous positions. Most combinations did not increase pore diameter, but duplication of the terminal seventh hairpin exhibited a rare population of pores with enhanced conductance, suggesting barrel enlargement. Further engineering efforts to optimize the terminal β-turn sequence have resulted in up to 50% of pores with increased conductance. Importantly, the enlarged pores retained the sensing functionality of the original scaffold, highlighting the potential of this approach for developing β-barrel OMP sensors with tunable dimensions.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 8","pages":"e70203"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70203","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Outer membrane β-barrel proteins (OMPs) are channels found in the outer membranes of Gram-negative bacteria characterized by a stable and diverse barrel architecture, which has made them attractive for nanopore sensing applications. Here, we systematically investigated the feasibility of expanding outer membrane protein G (OmpG) from its native 14-stranded β-barrel to an enhanced conductance variant by independently duplicating each of its seven hairpin units and inserting them downstream of their endogenous positions. Most combinations did not increase pore diameter, but duplication of the terminal seventh hairpin exhibited a rare population of pores with enhanced conductance, suggesting barrel enlargement. Further engineering efforts to optimize the terminal β-turn sequence have resulted in up to 50% of pores with increased conductance. Importantly, the enlarged pores retained the sensing functionality of the original scaffold, highlighting the potential of this approach for developing β-barrel OMP sensors with tunable dimensions.

通过β-发夹复制外膜蛋白G纳米孔的桶状扩张。
外膜β-桶状蛋白(OMPs)是在革兰氏阴性菌外膜中发现的通道,其特征是具有稳定和多样化的桶状结构,这使得它们在纳米孔传感应用中具有吸引力。在这里,我们系统地研究了将外膜蛋白G (OmpG)从其天然的14股β-桶扩展到增强电导变体的可行性,方法是独立复制其七个发夹单元,并将它们插入其内源性位置的下游。大多数组合没有增加气孔直径,但末端第7发夹的重复表现出罕见的气孔群,电导增强,表明桶增大。进一步优化终端β-转序的工程努力已经导致高达50%的孔隙电导率增加。重要的是,扩大的孔隙保留了原始支架的传感功能,突出了这种方法在开发具有可调尺寸的β-桶OMP传感器方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信