Re-engineering a transferase scaffold for indole C3 methylation in diketopiperazines.

IF 5.2 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-09-01 DOI:10.1002/pro.70254
Mona Haase, Oliver H Weiergräber, Jörg Pietruszka
{"title":"Re-engineering a transferase scaffold for indole C3 methylation in diketopiperazines.","authors":"Mona Haase, Oliver H Weiergräber, Jörg Pietruszka","doi":"10.1002/pro.70254","DOIUrl":null,"url":null,"abstract":"<p><p>The pyrroloindole (hexahydropyrrolo[2,3-b]indole, HPI) structural motif is present in a wide range of natural products with various biological activities, yet its chemical synthesis poses a challenge, particularly regarding methylation at the indole C3 position. In nature, S-adenosyl methionine (SAM)-dependent methyltransferases efficiently catalyze this reaction with high stereoselectivity. This study presents the investigation and rational re-design of a potential methyltransferase, termed SeMT, from the actinomycete Saccharopolyspora erythraea. While its three-dimensional structure elucidated via X-ray crystallography confirmed extensive structural similarity to cyclic dipeptide-processing methyltransferases such as SgMT, its putative catalytic center is clearly divergent. Accordingly, wild-type SeMT displayed minimal activity with diketopiperazine (DKP) substrates, triggering an extensive mutagenesis effort aimed at iteratively enhancing this methyltransferase function. This work yielded a variant with appreciable activity, which was comprehensively characterized. Notably, a specific mutation within the catalytic triad of SeMT proved critical not only for its own function but also for the temperature-activity profile of its homolog protein SgMT. Beyond the specific properties of SeMT, these findings hence provide important insights into the active center architecture of indole C3-methyltransferases, supporting further development of these enzymes into refined biocatalysts for synthetic applications.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 9","pages":"e70254"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70254","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The pyrroloindole (hexahydropyrrolo[2,3-b]indole, HPI) structural motif is present in a wide range of natural products with various biological activities, yet its chemical synthesis poses a challenge, particularly regarding methylation at the indole C3 position. In nature, S-adenosyl methionine (SAM)-dependent methyltransferases efficiently catalyze this reaction with high stereoselectivity. This study presents the investigation and rational re-design of a potential methyltransferase, termed SeMT, from the actinomycete Saccharopolyspora erythraea. While its three-dimensional structure elucidated via X-ray crystallography confirmed extensive structural similarity to cyclic dipeptide-processing methyltransferases such as SgMT, its putative catalytic center is clearly divergent. Accordingly, wild-type SeMT displayed minimal activity with diketopiperazine (DKP) substrates, triggering an extensive mutagenesis effort aimed at iteratively enhancing this methyltransferase function. This work yielded a variant with appreciable activity, which was comprehensively characterized. Notably, a specific mutation within the catalytic triad of SeMT proved critical not only for its own function but also for the temperature-activity profile of its homolog protein SgMT. Beyond the specific properties of SeMT, these findings hence provide important insights into the active center architecture of indole C3-methyltransferases, supporting further development of these enzymes into refined biocatalysts for synthetic applications.

Abstract Image

Abstract Image

Abstract Image

重组二酮哌嗪中吲哚C3甲基化转移酶支架。
吡咯吲哚(hexahydropyrrolo[2,3-b]吲哚,HPI)结构基序广泛存在于具有各种生物活性的天然产物中,但其化学合成存在挑战,特别是在吲哚C3位置的甲基化方面。在自然界中,s -腺苷型蛋氨酸(SAM)依赖的甲基转移酶能以高立体选择性有效地催化该反应。本研究提出了一种潜在的甲基转移酶,称为SeMT,从放线菌Saccharopolyspora赤藓的调查和合理的重新设计。虽然通过x射线晶体学阐明的三维结构证实了其与环二肽加工甲基转移酶(如sggmt)的广泛结构相似性,但其假定的催化中心明显不同。因此,野生型SeMT对二酮哌嗪(DKP)底物表现出最小的活性,引发了广泛的诱变努力,旨在反复增强这种甲基转移酶的功能。这项工作产生了一个具有可观活性的变体,并对其进行了全面的表征。值得注意的是,SeMT催化三联体中的一个特定突变不仅对其自身功能至关重要,而且对其同源蛋白sggmt的温度-活性谱也至关重要。除了SeMT的特定性质外,这些发现还为吲哚c3 -甲基转移酶的活性中心结构提供了重要的见解,支持这些酶进一步发展为用于合成应用的精制生物催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信