Davide Mallardi, Ginevra Danti, Antonio Galluzzo, Linda Calistri, Diletta Cozzi, Daniele Lavacchi, Daniele Rossini, Lorenzo Antonuzzo, Sebastiano Paolucci, Simone Busoni, Francesca Castiglione, Luca Messerini, Fabio Cianchi, Vittorio Miele
{"title":"Radiomics-based prediction of microsatellite instability in colorectal cancer: a non-invasive approach to treatment stratification.","authors":"Davide Mallardi, Ginevra Danti, Antonio Galluzzo, Linda Calistri, Diletta Cozzi, Daniele Lavacchi, Daniele Rossini, Lorenzo Antonuzzo, Sebastiano Paolucci, Simone Busoni, Francesca Castiglione, Luca Messerini, Fabio Cianchi, Vittorio Miele","doi":"10.1007/s11547-025-02081-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Management of colorectal cancer (CRC) is determined by the stage of the disease and molecular features, such as microsatellite instability (MSI). MSI-high/deficient mismatch repair (MSI-H/dMMR) tumors respond better to immunotherapy but poorly to 5-FU-based treatments. With increasing use of neoadjuvant chemotherapy there is interest in developing non-invasive, radiomics models based on preoperative contrast-enhanced CT scans to predict MSI status and support personalized therapy.</p><p><strong>Material and methods: </strong>Adult patients diagnosed with CRC who underwent pre-treatment staging with contrast-enhanced CT and had known MSI status were retrospectively analyzed. Portal venous phase images were assessed. Two radiologists, blinded to MSI status, manually segmented tumor regions on CT images. Radiomic features and statistical modeling were used to develop a predictive model for identifying the MSI-H phenotype.</p><p><strong>Results: </strong>Analysis was conducted on 54 adult CRC patients who had undergone staging CT scans with known MSI status. Two different models were built considering different brands of CT machines. Twenty statistically significant radiomic features from the portal venous phase of CT images able to differentiate MSI from microsatellite stable (MSS) patients were selected for each model. LASSO regression was applied, selecting features for model construction. The best model's performance demonstrated an area under the ROC curve of 0.844 (95% CI = 0.73-0.96 DeLong, p < 0,05).</p><p><strong>Conclusion: </strong>The results demonstrate the potential of the radiomics model as a non-invasive, cost-effective tool for MSI evaluation, guiding CRC therapy. It aids in identifying patients who would benefit from immunotherapy or chemotherapy, supporting the therapeutic shift from postoperative to preoperative treatment.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02081-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Management of colorectal cancer (CRC) is determined by the stage of the disease and molecular features, such as microsatellite instability (MSI). MSI-high/deficient mismatch repair (MSI-H/dMMR) tumors respond better to immunotherapy but poorly to 5-FU-based treatments. With increasing use of neoadjuvant chemotherapy there is interest in developing non-invasive, radiomics models based on preoperative contrast-enhanced CT scans to predict MSI status and support personalized therapy.
Material and methods: Adult patients diagnosed with CRC who underwent pre-treatment staging with contrast-enhanced CT and had known MSI status were retrospectively analyzed. Portal venous phase images were assessed. Two radiologists, blinded to MSI status, manually segmented tumor regions on CT images. Radiomic features and statistical modeling were used to develop a predictive model for identifying the MSI-H phenotype.
Results: Analysis was conducted on 54 adult CRC patients who had undergone staging CT scans with known MSI status. Two different models were built considering different brands of CT machines. Twenty statistically significant radiomic features from the portal venous phase of CT images able to differentiate MSI from microsatellite stable (MSS) patients were selected for each model. LASSO regression was applied, selecting features for model construction. The best model's performance demonstrated an area under the ROC curve of 0.844 (95% CI = 0.73-0.96 DeLong, p < 0,05).
Conclusion: The results demonstrate the potential of the radiomics model as a non-invasive, cost-effective tool for MSI evaluation, guiding CRC therapy. It aids in identifying patients who would benefit from immunotherapy or chemotherapy, supporting the therapeutic shift from postoperative to preoperative treatment.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.