{"title":"Development of porous customized Ti-6Al-4V cranial implant manufactured by laser beam powder bed fusion.","authors":"Mihrigul Ekşi Altan, Alperen Acar, Seyhan Özen, Yeliz Güldorum, Eren Külle, Berke Apaydınlı, Abdulkadir Günay, Meltem Eryildiz","doi":"10.1177/09544119251351733","DOIUrl":null,"url":null,"abstract":"<p><p>Customized cranial implants play a crucial role in neurosurgery, serving to restore cranial integrity and protect the underlying brain tissue after trauma or surgical intervention. Ti-6Al-4V cranial implants exhibit high mechanical strength; however, their solid forms can be excessively heavy and possess a high elastic modulus, leading to stress shielding effects. This study focuses on designing a cranial implant utilizing computer tomography data, incorporating different lattice and porous structures to optimize weight and mechanical performance. The analysis, conducted with nTop software, compared displacement and von Mises stress values across different structures. The isotruss lattice structure emerged as the most effective, achieving a weight reduction of approximately 50% while maintaining a von Mises stress of 40 MPa. Following the computational analysis, Laser Beam Powder Bed Fusion (PBF-LB) was employed to fabricate the isotruss implant and the compression test was performed to mimic the cranial implant under realistic conditions. The isotruss lattice cranial implant exhibited a remarkable load-bearing capacity of up to 18,000 N while achieving a 50% weight reduction compared to the solid implant, indicating that this lightweight structure not only offers high-performance load-bearing capabilities but also shows great potential for use in surgical applications.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 8","pages":"736-745"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251351733","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Customized cranial implants play a crucial role in neurosurgery, serving to restore cranial integrity and protect the underlying brain tissue after trauma or surgical intervention. Ti-6Al-4V cranial implants exhibit high mechanical strength; however, their solid forms can be excessively heavy and possess a high elastic modulus, leading to stress shielding effects. This study focuses on designing a cranial implant utilizing computer tomography data, incorporating different lattice and porous structures to optimize weight and mechanical performance. The analysis, conducted with nTop software, compared displacement and von Mises stress values across different structures. The isotruss lattice structure emerged as the most effective, achieving a weight reduction of approximately 50% while maintaining a von Mises stress of 40 MPa. Following the computational analysis, Laser Beam Powder Bed Fusion (PBF-LB) was employed to fabricate the isotruss implant and the compression test was performed to mimic the cranial implant under realistic conditions. The isotruss lattice cranial implant exhibited a remarkable load-bearing capacity of up to 18,000 N while achieving a 50% weight reduction compared to the solid implant, indicating that this lightweight structure not only offers high-performance load-bearing capabilities but also shows great potential for use in surgical applications.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.