Alexander Mullens, Tao Zhong, Alexander Lipka, Peter Balint-Kurti, Tiffany Jamann
{"title":"Vascular Pathogenicity of <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> in Maize Is Modulated by Tissue-Specific Host Resistance.","authors":"Alexander Mullens, Tao Zhong, Alexander Lipka, Peter Balint-Kurti, Tiffany Jamann","doi":"10.1094/PHYTO-05-25-0164-R","DOIUrl":null,"url":null,"abstract":"<p><p>How host genotype shapes pathogen tissue tropism remains poorly understood. Vascular and nonvascular tissues represent distinct habitats within a plant for bacteria to colonize. Host plants often utilize different mechanisms to defend themselves against vascular and nonvascular pathogens and mechanisms of resistance employed by the host can vary by organ. <i>Xanthomonas vasicola</i> pv. <i>vasculorum</i> (<i>Xvv</i>) is an emerging bacterial maize pathogen, and this pathosystem offers an opportunity to study how host resistance differs in response to the vascular and nonvascular lifestyles exhibited by a single bacterial phytopathogen. We used different inoculation techniques to induce vascular and nonvascular disease and evaluated maize populations using both techniques to map resistance to vascular and non-vascular disease caused by <i>Xvv</i>. <i>Xvv</i> can colonize both vascular and nonvascular tissues, depending on the genotype. Different inoculation techniques can be used to induce vascular or nonvascular colonization. Independent loci control variation in resistance to <i>Xvv</i> during vascular pathogenesis and nonvascular pathogenesis. We confirmed the role of those regions in resistance to vascular and nonvascular infection. This study offers insights into how host resistance shapes how bacterial pathogens adapt to both vascular and nonvascular lifestyles. We show that host genotype can dictate which tissues a pathogen can infect. This system can serve as a model to understand tissue-specific host resistance to plant pathogens and tissue specificity in pathogens.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-05-25-0164-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
How host genotype shapes pathogen tissue tropism remains poorly understood. Vascular and nonvascular tissues represent distinct habitats within a plant for bacteria to colonize. Host plants often utilize different mechanisms to defend themselves against vascular and nonvascular pathogens and mechanisms of resistance employed by the host can vary by organ. Xanthomonas vasicola pv. vasculorum (Xvv) is an emerging bacterial maize pathogen, and this pathosystem offers an opportunity to study how host resistance differs in response to the vascular and nonvascular lifestyles exhibited by a single bacterial phytopathogen. We used different inoculation techniques to induce vascular and nonvascular disease and evaluated maize populations using both techniques to map resistance to vascular and non-vascular disease caused by Xvv. Xvv can colonize both vascular and nonvascular tissues, depending on the genotype. Different inoculation techniques can be used to induce vascular or nonvascular colonization. Independent loci control variation in resistance to Xvv during vascular pathogenesis and nonvascular pathogenesis. We confirmed the role of those regions in resistance to vascular and nonvascular infection. This study offers insights into how host resistance shapes how bacterial pathogens adapt to both vascular and nonvascular lifestyles. We show that host genotype can dictate which tissues a pathogen can infect. This system can serve as a model to understand tissue-specific host resistance to plant pathogens and tissue specificity in pathogens.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.