{"title":"JsSAMDC promotes polyamine synthesis and flowering genes to synergistically regulate female flower bud differentiation.","authors":"Jinyan Chen, Wenwen Li, Chunxiang Li, Yuanqi Huang, Jian Peng, Dong Huang, Mengmeng Liu, Xuejun Pan, Wen' E Zhang","doi":"10.1007/s00299-025-03592-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The JsSAMDCs promotes the expression of polyamine synthesis genes and regulates the expression of flowering genes which in turn promotes the differentiation of female flower buds in Juglans sigillata Dode. Juglans sigillata is a typical dioecious plant, and its low female-to-male ratio has been a significant factor limiting J. sigillata yield. As a key rate-limiting enzyme in polyamine synthesis, the role of S-adenosylmethionine decarboxylase (SAMDC) in flower bud differentiation is unknown. In this study, we identified seven JsSAMDC genes in the J. sigillata genome. Transcriptome and metabolome data showed that JsSAMDC1 exhibited significant co-expression connectivity, and had a significant positive correlation with the flowering genes CO and SOC1. Concomitantly, higher levels of spermine (Spm) were detected in female flower buds. Exogenous Spm significantly increased the expression levels of these flowering genes and Spm content in female flower buds. JsSAMDC1 encodes a hydrophilic protein dominated by irregular coils in its secondary structure, lacking both a transmembrane region and a signal peptide. The protein localizes to the nucleus, cytoplasm, and plasma membrane. Spatiotemporal expression analysis revealed predominant expression of JsSAMDC1 during the physiological differentiation of female flower buds. Transient silencing of JsSAMDC1 resulted in reduced expression of polyamine biosynthesis and flowering-related genes, decreased content of putrescine (Put) and spermidine (Spd) in flower buds, and promoted Spm accumulation. Overall, JsSAMDC1 and polyamine biosynthesis genes synergistically elevate Spm levels in female flower buds and, together with the flowering genes CO and SOC1, promote female flower bud differentiation in J. sigillata. This study provides a theoretical basis for understanding the relationship between polyamines and female flower bud differentiation in J. sigillata.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 9","pages":"204"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03592-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: The JsSAMDCs promotes the expression of polyamine synthesis genes and regulates the expression of flowering genes which in turn promotes the differentiation of female flower buds in Juglans sigillata Dode. Juglans sigillata is a typical dioecious plant, and its low female-to-male ratio has been a significant factor limiting J. sigillata yield. As a key rate-limiting enzyme in polyamine synthesis, the role of S-adenosylmethionine decarboxylase (SAMDC) in flower bud differentiation is unknown. In this study, we identified seven JsSAMDC genes in the J. sigillata genome. Transcriptome and metabolome data showed that JsSAMDC1 exhibited significant co-expression connectivity, and had a significant positive correlation with the flowering genes CO and SOC1. Concomitantly, higher levels of spermine (Spm) were detected in female flower buds. Exogenous Spm significantly increased the expression levels of these flowering genes and Spm content in female flower buds. JsSAMDC1 encodes a hydrophilic protein dominated by irregular coils in its secondary structure, lacking both a transmembrane region and a signal peptide. The protein localizes to the nucleus, cytoplasm, and plasma membrane. Spatiotemporal expression analysis revealed predominant expression of JsSAMDC1 during the physiological differentiation of female flower buds. Transient silencing of JsSAMDC1 resulted in reduced expression of polyamine biosynthesis and flowering-related genes, decreased content of putrescine (Put) and spermidine (Spd) in flower buds, and promoted Spm accumulation. Overall, JsSAMDC1 and polyamine biosynthesis genes synergistically elevate Spm levels in female flower buds and, together with the flowering genes CO and SOC1, promote female flower bud differentiation in J. sigillata. This study provides a theoretical basis for understanding the relationship between polyamines and female flower bud differentiation in J. sigillata.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.