{"title":"Rhizobacteria and kinetin: a synergistic solution for enhanced maize drought tolerance and seed quality.","authors":"Rubaika Khurshid, Shagufta Perveen, Abid Niaz","doi":"10.1007/s12298-025-01629-8","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress substantially threatens global food security. To cope with this, a field-based trial was performed to examine the influence of PGPRs/microbial consortia <i>(Cytobacillus firmus</i> & <i>Pseudomonas aeruginosa</i>) and kinetin on the maize under full irrigation and 50% drought. The results of biochemical features of bacteria revealed positive for phosphorus, and zinc solubilization with great capacity to battle stress circumstances owing (ACC deaminase, Indole 3 Acetic acid IAA, and siderophore) production. Seeds treated with the PGPRs consortium along, with a kinetin foliar spray, greatly decreased the consequences of stress from drought on maize and improved yield characteristics, macronutrients, antioxidant enzymes, photosynthetic content production under 50% drought stress. Osmolytes and secondary metabolites were up-regulated under full irrigation when the PGPRs consortium and kinetin were used. When PGPRs and kinetin were combined, the overproduction of malondialdehyde and H<sub>2</sub>O<sub>2</sub> was reduced. Water stress decreased oil, kernel sugar, protein, and moisture content in maize cultivars, but increased seed fiber, starch, and ash. PGPRs and kinetin enhanced seed sugar, oil, moisture, protein, ash, and fiber levels in maize grown under well-irrigated and drought-stress environments. Finally, PGPR (10<sup>-7</sup> cfu/mL) and PGR (Kinetin10<sup>-3</sup> M) can be employed together to boost maize production in drought-prone areas.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01629-8.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 7","pages":"1105-1119"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01629-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress substantially threatens global food security. To cope with this, a field-based trial was performed to examine the influence of PGPRs/microbial consortia (Cytobacillus firmus & Pseudomonas aeruginosa) and kinetin on the maize under full irrigation and 50% drought. The results of biochemical features of bacteria revealed positive for phosphorus, and zinc solubilization with great capacity to battle stress circumstances owing (ACC deaminase, Indole 3 Acetic acid IAA, and siderophore) production. Seeds treated with the PGPRs consortium along, with a kinetin foliar spray, greatly decreased the consequences of stress from drought on maize and improved yield characteristics, macronutrients, antioxidant enzymes, photosynthetic content production under 50% drought stress. Osmolytes and secondary metabolites were up-regulated under full irrigation when the PGPRs consortium and kinetin were used. When PGPRs and kinetin were combined, the overproduction of malondialdehyde and H2O2 was reduced. Water stress decreased oil, kernel sugar, protein, and moisture content in maize cultivars, but increased seed fiber, starch, and ash. PGPRs and kinetin enhanced seed sugar, oil, moisture, protein, ash, and fiber levels in maize grown under well-irrigated and drought-stress environments. Finally, PGPR (10-7 cfu/mL) and PGR (Kinetin10-3 M) can be employed together to boost maize production in drought-prone areas.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01629-8.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.