The polyamine uptake transporters PUT2/LAT4 and PUT5/LAT5 contribute to Arabidopsis defense response against Botrytis cinerea.

IF 3.3 3区 生物学 Q1 PLANT SCIENCES
Erick M Peña-Lucio, Fernando L Pieckenstain, M Elisa Gonzalez, Emmanuel Flores-Hernández, Margarita Rodríguez-Kessler
{"title":"The polyamine uptake transporters PUT2/LAT4 and PUT5/LAT5 contribute to Arabidopsis defense response against <i>Botrytis cinerea</i>.","authors":"Erick M Peña-Lucio, Fernando L Pieckenstain, M Elisa Gonzalez, Emmanuel Flores-Hernández, Margarita Rodríguez-Kessler","doi":"10.1007/s12298-025-01630-1","DOIUrl":null,"url":null,"abstract":"<p><p>Under biotic stress, plant polyamine metabolism undergoes significant changes, including increased biosynthesis and catabolism, which lead to hydrogen peroxide production. However, the roles of polyamine mobilization and transport across membranes remain elusive. <i>Arabidopsis thaliana</i> encodes five Polyamine Uptake Transporters (PUT1-PUT5). In this study, we investigated the role of polyamine transport in <i>Arabidopsis</i> during its interaction with the necrotrophic fungus <i>Botrytis cinerea</i> (<i>Bc</i>). Fungal inoculation induced the expression of all <i>PUT</i>/<i>LAT</i> genes at different times throughout disease progression. To assess their contribution to defense, we challenged five homozygous <i>put</i> mutants (<i>put1-1</i> to <i>put5-1</i>) with <i>Bc</i>. Notably, <i>put2-1</i> and <i>put5-1</i> exhibited increased susceptibility to <i>Bc</i>, which was further exacerbated in the <i>put2-1 put5-1</i> double mutant. Spermidine supplementation had a reduced effect on enhancing <i>Bc</i> resistance in <i>put</i> mutants, while it increased resistance in the <i>35S::PUT2</i> overexpression lines, suggesting that spermidine transport contributes to plant defense. Consistently, spermidine treatment elevated endogenous spermidine levels in WT but had minimal effect on <i>put2-1</i>, <i>put5-1</i>, or the double mutant. In contrast, spermine supplementation raised endogenous spermine levels in all genotypes, even under infection. Under mock conditions, catalase and ascorbate peroxidase activities were elevated in <i>put</i> mutants, while polyamine oxidase activity remained unchanged. These antioxidant enzymes and polyamine oxidase activity were induced upon <i>Bc</i> infection in WT but not in <i>put</i> mutants. Thus, disruptions in polyamine transport may affect their catabolism and the plant antioxidant response. This research emphasizes the importance of PUT-mediated polyamine transport in the plant's defense response to <i>Bc</i>.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01630-1.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 7","pages":"1053-1069"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01630-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Under biotic stress, plant polyamine metabolism undergoes significant changes, including increased biosynthesis and catabolism, which lead to hydrogen peroxide production. However, the roles of polyamine mobilization and transport across membranes remain elusive. Arabidopsis thaliana encodes five Polyamine Uptake Transporters (PUT1-PUT5). In this study, we investigated the role of polyamine transport in Arabidopsis during its interaction with the necrotrophic fungus Botrytis cinerea (Bc). Fungal inoculation induced the expression of all PUT/LAT genes at different times throughout disease progression. To assess their contribution to defense, we challenged five homozygous put mutants (put1-1 to put5-1) with Bc. Notably, put2-1 and put5-1 exhibited increased susceptibility to Bc, which was further exacerbated in the put2-1 put5-1 double mutant. Spermidine supplementation had a reduced effect on enhancing Bc resistance in put mutants, while it increased resistance in the 35S::PUT2 overexpression lines, suggesting that spermidine transport contributes to plant defense. Consistently, spermidine treatment elevated endogenous spermidine levels in WT but had minimal effect on put2-1, put5-1, or the double mutant. In contrast, spermine supplementation raised endogenous spermine levels in all genotypes, even under infection. Under mock conditions, catalase and ascorbate peroxidase activities were elevated in put mutants, while polyamine oxidase activity remained unchanged. These antioxidant enzymes and polyamine oxidase activity were induced upon Bc infection in WT but not in put mutants. Thus, disruptions in polyamine transport may affect their catabolism and the plant antioxidant response. This research emphasizes the importance of PUT-mediated polyamine transport in the plant's defense response to Bc.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01630-1.

多胺摄取转运体PUT2/LAT4和PUT5/LAT5参与拟南芥对灰葡萄孢的防御反应。
在生物胁迫下,植物多胺代谢发生显著变化,包括生物合成和分解代谢增加,从而导致过氧化氢的产生。然而,多胺的动员和跨膜运输的作用仍然难以捉摸。拟南芥编码5种多胺摄取转运蛋白(PUT1-PUT5)。在这项研究中,我们研究了多胺转运在拟南芥与坏死性真菌灰霉病菌(Botrytis cinerea, Bc)相互作用中的作用。真菌接种诱导所有PUT/LAT基因在疾病进展的不同时间表达。为了评估它们对防御的贡献,我们用Bc挑战了5个纯合子put突变体(put1-1至put5-1)。值得注意的是,put2-1和put5-1对Bc的易感性增加,在put2-1和put5-1双突变体中进一步加剧。在put突变体中,添加亚精胺对提高Bc抗性的作用降低,而在35S::PUT2过表达系中,添加亚精胺增加了抗性,表明亚精胺转运有助于植物防御。与此一致的是,亚精胺处理提高了WT中内源亚精胺的水平,但对put2-1、put5-1或双突变体的影响很小。相比之下,即使在感染情况下,补充精胺也能提高所有基因型的内源性精胺水平。在模拟条件下,突变体过氧化氢酶和抗坏血酸过氧化物酶活性升高,而多胺氧化酶活性保持不变。这些抗氧化酶和多胺氧化酶活性在WT感染时被诱导,而在put突变体中没有。因此,多胺运输的中断可能会影响它们的分解代谢和植物的抗氧化反应。本研究强调了put介导的多胺转运在植物对Bc的防御反应中的重要性。补充信息:在线版本包含补充资料,可在10.1007/s12298-025-01630-1获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信