Melaine Gonzalez-Garcia, Soham Mukhopadhyay, Ian Major, Edel Pérez-López
{"title":"Arabidopsis ecotype screening reveals novel sources of clubroot resistance.","authors":"Melaine Gonzalez-Garcia, Soham Mukhopadhyay, Ian Major, Edel Pérez-López","doi":"10.1094/PDIS-05-25-0975-SC","DOIUrl":null,"url":null,"abstract":"<p><p>Clubroot, caused by Plasmodiophora brassicae, poses a persistent threat to Brassicaceae crops, particularly in regions where resistant cultivars are under strong selection pressure. To identify new sources of resistance and better understand the underlying genetic mechanisms, we evaluated 60 Arabidopsis thaliana ecotypes against the highly virulent Canadian pathotype 3A. Using stringent phenotyping criteria, pathogen DNA quantification, and survival analysis, we identified eight resistant ecotypes, including two novel sources, Marce-1 and DraII-6. DraII-6 exhibited exceptionally low disease symptoms and a high survival rate. While the clubroot resistant gene RPB1/WeiTsing was detected in many ecotypes, DraII-6 exhibited uniquely high expression of RPB1 at early infection stages, suggesting a possible role in impeding pathogen establishment. However, the observed resistance pattern implies the involvement of additional genetic or regulatory factors beyond RPB1 alone. Given the urgent need to diversify resistance sources and the growing complexity of clubroot epidemiology, we present these findings as a foundation for further mechanistic studies. The rapid release of this work as a Short Communication reflects both its significance for the field and its potential to guide future resistance breeding in Brassica crops.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-05-25-0975-SC","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clubroot, caused by Plasmodiophora brassicae, poses a persistent threat to Brassicaceae crops, particularly in regions where resistant cultivars are under strong selection pressure. To identify new sources of resistance and better understand the underlying genetic mechanisms, we evaluated 60 Arabidopsis thaliana ecotypes against the highly virulent Canadian pathotype 3A. Using stringent phenotyping criteria, pathogen DNA quantification, and survival analysis, we identified eight resistant ecotypes, including two novel sources, Marce-1 and DraII-6. DraII-6 exhibited exceptionally low disease symptoms and a high survival rate. While the clubroot resistant gene RPB1/WeiTsing was detected in many ecotypes, DraII-6 exhibited uniquely high expression of RPB1 at early infection stages, suggesting a possible role in impeding pathogen establishment. However, the observed resistance pattern implies the involvement of additional genetic or regulatory factors beyond RPB1 alone. Given the urgent need to diversify resistance sources and the growing complexity of clubroot epidemiology, we present these findings as a foundation for further mechanistic studies. The rapid release of this work as a Short Communication reflects both its significance for the field and its potential to guide future resistance breeding in Brassica crops.
期刊介绍:
Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.