{"title":"Physiological Considerations and Delivery Strategies for Targeting Tumors Through Intraperitoneal Delivery.","authors":"Md Jobair Hossen Jony, Sheyda Ranjbar, Rama Prajapati, Seyyed Majid Eslami, Zixuan Zhen, Mittal Darji, Xueli Zhu, Xiuling Lu","doi":"10.1007/s11095-025-03917-0","DOIUrl":null,"url":null,"abstract":"<p><p>The peritoneal cavity presents both unique challenges and promising opportunities for targeted therapy in malignancies like ovarian, gastric, pancreatic, and colorectal cancers. Intraperitoneal drug delivery offers significant pharmacokinetic advantages over intravenous administration by achieving high local drug concentrations and tumor-specific delivery potential while minimizing systemic toxicity. Despite these theoretical advantages, the clinical implementation of intraperitoneal therapy is limited by several barriers, including restricted tissue penetration, incomplete peritoneal coverage, rapid drug clearance, catheter-related complications, posttreatment peritoneal adhesions, and ascites-induced permeability dysregulation. This review highlights three advanced strategies developed to overcome these obstacles: (1) particulate-based delivery systems, such as nanoparticles to enhance tumor specificity through passive accumulation, active targeting and on-demand drug release in response to internal or external stimuli; (2) Sustained drug release hydrogels and (3) pressurized intraperitoneal aerosol chemotherapy. Despite promising preclinical and clinical advancements, successful translation requires systematic optimization of multiple parameters, such as ascites dynamics, tumor heterogeneity, and multidrug resistance. The integration of advanced delivery technologies with a comprehensive understanding of peritoneal physiology remains crucial for achieving safe and effective clinical applications.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03917-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The peritoneal cavity presents both unique challenges and promising opportunities for targeted therapy in malignancies like ovarian, gastric, pancreatic, and colorectal cancers. Intraperitoneal drug delivery offers significant pharmacokinetic advantages over intravenous administration by achieving high local drug concentrations and tumor-specific delivery potential while minimizing systemic toxicity. Despite these theoretical advantages, the clinical implementation of intraperitoneal therapy is limited by several barriers, including restricted tissue penetration, incomplete peritoneal coverage, rapid drug clearance, catheter-related complications, posttreatment peritoneal adhesions, and ascites-induced permeability dysregulation. This review highlights three advanced strategies developed to overcome these obstacles: (1) particulate-based delivery systems, such as nanoparticles to enhance tumor specificity through passive accumulation, active targeting and on-demand drug release in response to internal or external stimuli; (2) Sustained drug release hydrogels and (3) pressurized intraperitoneal aerosol chemotherapy. Despite promising preclinical and clinical advancements, successful translation requires systematic optimization of multiple parameters, such as ascites dynamics, tumor heterogeneity, and multidrug resistance. The integration of advanced delivery technologies with a comprehensive understanding of peritoneal physiology remains crucial for achieving safe and effective clinical applications.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.