Biotic interactions and environmental filtering both determine earthworm alpha and beta diversity in tropical rainforests.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Arnaud Goulpeau, Mickaël Hedde, Pierre Ganault, Emmanuel Lapied, Marie-Eugénie Maggia, Eric Marcon, Thibaud Decaëns
{"title":"Biotic interactions and environmental filtering both determine earthworm alpha and beta diversity in tropical rainforests.","authors":"Arnaud Goulpeau, Mickaël Hedde, Pierre Ganault, Emmanuel Lapied, Marie-Eugénie Maggia, Eric Marcon, Thibaud Decaëns","doi":"10.1007/s00442-025-05788-z","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relative importance of biotic interactions, multiple environmental drivers, and neutral processes in shaping community diversity and composition is a central question for both theoretical and applied ecology. We analysed a dataset describing 125 earthworm communities sampled in 10 localities in French Guiana. DNA barcodes were used to delimit operational taxonomic units (OTUs) that we considered as species surrogates to avoid the taxonomic deficit and calculate community-scale species richness and pair-wise Sørensen beta-diversity. We used log-ratio and generalised linear models to highlight the effects of biotic interactions and environment as drivers of alpha diversity, and generalised dissimilarity models to figure out the relative contribution of space and environment to beta-diversity at different spatial extents. Community-scale alpha diversity was mainly explained by habitat filtering (soil texture) and interspecific competition that limit the number of locally co-existing species. Beta diversity between pairs of communities was mainly explained by distance when comparing communities in similar habitats, by topography and available soil phosphorus when comparing communities in different habitats, and by distance, elevation and climate when comparing all possible pairs of communities. While community composition is determined locally by neutral processes and environmental filtering, biogeographic processes linked to dispersal limitation and adaptation to local environment are the most influential on a regional scale. This highlights the complex interplay of dispersal limitation, biotic interactions and environmental filtering during the process of community assembly.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 9","pages":"151"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-025-05788-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relative importance of biotic interactions, multiple environmental drivers, and neutral processes in shaping community diversity and composition is a central question for both theoretical and applied ecology. We analysed a dataset describing 125 earthworm communities sampled in 10 localities in French Guiana. DNA barcodes were used to delimit operational taxonomic units (OTUs) that we considered as species surrogates to avoid the taxonomic deficit and calculate community-scale species richness and pair-wise Sørensen beta-diversity. We used log-ratio and generalised linear models to highlight the effects of biotic interactions and environment as drivers of alpha diversity, and generalised dissimilarity models to figure out the relative contribution of space and environment to beta-diversity at different spatial extents. Community-scale alpha diversity was mainly explained by habitat filtering (soil texture) and interspecific competition that limit the number of locally co-existing species. Beta diversity between pairs of communities was mainly explained by distance when comparing communities in similar habitats, by topography and available soil phosphorus when comparing communities in different habitats, and by distance, elevation and climate when comparing all possible pairs of communities. While community composition is determined locally by neutral processes and environmental filtering, biogeographic processes linked to dispersal limitation and adaptation to local environment are the most influential on a regional scale. This highlights the complex interplay of dispersal limitation, biotic interactions and environmental filtering during the process of community assembly.

生物相互作用和环境过滤都决定了热带雨林中蚯蚓α和β的多样性。
理解生物相互作用、多种环境驱动因素和中性过程在塑造群落多样性和组成中的相对重要性是理论和应用生态学的核心问题。我们分析了法属圭亚那10个地区125个蚯蚓群落的数据集。利用DNA条形码对可操作分类单位(OTUs)进行划分,以避免分类缺陷,并计算群落尺度的物种丰富度和成对Sørensen β多样性。我们利用对数比模型和广义线性模型来强调生物相互作用和环境对α多样性的驱动作用,并利用广义差异模型来计算空间和环境在不同空间范围内对β多样性的相对贡献。群落尺度α多样性主要是由生境过滤(土壤质地)和种间竞争限制了本地共存物种的数量来解释的。群落对间的Beta多样性在相似生境下主要由距离解释,在不同生境下主要由地形和土壤速效磷解释,在所有可能的群落对之间主要由距离、海拔和气候解释。虽然群落组成是由中性过程和环境过滤在当地决定的,但与扩散限制和对当地环境的适应有关的生物地理过程在区域范围内最具影响力。这凸显了群落聚集过程中扩散限制、生物相互作用和环境过滤的复杂相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信