In Vivo Phage Display for the Identification of Muscle Homing Peptides to Improve the Delivery of Phosphorodiamidate Morpholino Oligomers for Duchenne Muscular Dystrophy Therapy.
Anne-Fleur E Schneider, Christa L Tanganyika-de Winter, Hailiang Mei, Silvana M G Jirka, Xuyu Tan, Emily G Thompson, Kristin Ha, Anindita Mitra, Stephanie Garcia, Marleen Luimes, Ryan Oliver, Kathy Y Morgan, Vincent Guerlavais, Annemieke Aartsma-Rus
{"title":"<i>In Vivo</i> Phage Display for the Identification of Muscle Homing Peptides to Improve the Delivery of Phosphorodiamidate Morpholino Oligomers for Duchenne Muscular Dystrophy Therapy.","authors":"Anne-Fleur E Schneider, Christa L Tanganyika-de Winter, Hailiang Mei, Silvana M G Jirka, Xuyu Tan, Emily G Thompson, Kristin Ha, Anindita Mitra, Stephanie Garcia, Marleen Luimes, Ryan Oliver, Kathy Y Morgan, Vincent Guerlavais, Annemieke Aartsma-Rus","doi":"10.1177/21593337251371708","DOIUrl":null,"url":null,"abstract":"<p><p>The severe X-linked degenerative neuromuscular disease Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin through reading frame disruptive mutations in the DMD gene. Dystrophin protein is crucial for the stability of the muscle. Targeting specific exons with antisense oligonucleotides (ASO) will prevent inclusion of the exon during pre-mRNA splicing, which can restore the reading frame, facilitating the production of partially functional dystrophin proteins. For DMD, four ASOs of the phosphorodiamidate morpholino oligomer (PMOs) chemistry are FDA approved. It is anticipated that improved delivery to skeletal muscle and heart will lead to larger therapeutic results. With our research, we sought to identify muscle-homing peptides that can achieve increased delivery of ASOs to muscle or heart when conjugated to PMOs. We applied <i>in vivo</i> phage display biopanning mouse models for DMD to identify muscle-homing peptides while simultaneously negatively selecting peptides that home to unwanted organs, such as the kidney and liver. After confirmation of the muscle homing ability <i>in vitro</i>, we conjugated selected candidate peptides to PMOs to be tested <i>in vivo</i>, where we found that conjugation of one specific muscle homing peptide led to significantly improved delivery to muscle, with a small improvement in exon skipping and dystrophin restoration.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21593337251371708","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The severe X-linked degenerative neuromuscular disease Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin through reading frame disruptive mutations in the DMD gene. Dystrophin protein is crucial for the stability of the muscle. Targeting specific exons with antisense oligonucleotides (ASO) will prevent inclusion of the exon during pre-mRNA splicing, which can restore the reading frame, facilitating the production of partially functional dystrophin proteins. For DMD, four ASOs of the phosphorodiamidate morpholino oligomer (PMOs) chemistry are FDA approved. It is anticipated that improved delivery to skeletal muscle and heart will lead to larger therapeutic results. With our research, we sought to identify muscle-homing peptides that can achieve increased delivery of ASOs to muscle or heart when conjugated to PMOs. We applied in vivo phage display biopanning mouse models for DMD to identify muscle-homing peptides while simultaneously negatively selecting peptides that home to unwanted organs, such as the kidney and liver. After confirmation of the muscle homing ability in vitro, we conjugated selected candidate peptides to PMOs to be tested in vivo, where we found that conjugation of one specific muscle homing peptide led to significantly improved delivery to muscle, with a small improvement in exon skipping and dystrophin restoration.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.