AI-driven epitope prediction: a system review, comparative analysis, and practical guide for vaccine development.

IF 6.5 1区 医学 Q1 IMMUNOLOGY
Francisca Villanueva-Flores, Javier I Sanchez-Villamil, Igor Garcia-Atutxa
{"title":"AI-driven epitope prediction: a system review, comparative analysis, and practical guide for vaccine development.","authors":"Francisca Villanueva-Flores, Javier I Sanchez-Villamil, Igor Garcia-Atutxa","doi":"10.1038/s41541-025-01258-y","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating AI into epitope prediction is transforming vaccine design by delivering unprecedented accuracy, speed, and efficiency. This review synthesizes recent breakthroughs particularly CNNs, transformers, and GNNs highlighting experimentally validated models like MUNIS and GraphBepi that reveal previously overlooked epitopes. By benchmarking AI tools against traditional methods, we identify structural data integration as pivotal, offering practical strategies to translate computational predictions into actionable experimental workflows for next-generation vaccines.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"207"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01258-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating AI into epitope prediction is transforming vaccine design by delivering unprecedented accuracy, speed, and efficiency. This review synthesizes recent breakthroughs particularly CNNs, transformers, and GNNs highlighting experimentally validated models like MUNIS and GraphBepi that reveal previously overlooked epitopes. By benchmarking AI tools against traditional methods, we identify structural data integration as pivotal, offering practical strategies to translate computational predictions into actionable experimental workflows for next-generation vaccines.

Abstract Image

Abstract Image

Abstract Image

人工智能驱动的表位预测:系统综述、比较分析和疫苗开发的实用指南。
将人工智能整合到表位预测中,通过提供前所未有的准确性、速度和效率,正在改变疫苗设计。这篇综述综合了最近的突破,特别是cnn、变压器和gnn,突出了实验验证的模型,如MUNIS和GraphBepi,揭示了以前被忽视的表位。通过将人工智能工具与传统方法进行比较,我们确定结构数据集成是关键,提供实用策略,将计算预测转化为下一代疫苗的可操作实验工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Vaccines
NPJ Vaccines Immunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍: Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信