Tianyi Chen, Yanxuan Xiong, Jinhong Zhang, Qiue Zhang, Jiang Wu, Nan Xu, Tang Liu
{"title":"Temporal dynamics, microdiversity, and ecological functions of viral communities during cyanobacterial blooms in Lake Taihu.","authors":"Tianyi Chen, Yanxuan Xiong, Jinhong Zhang, Qiue Zhang, Jiang Wu, Nan Xu, Tang Liu","doi":"10.1038/s41522-025-00771-1","DOIUrl":null,"url":null,"abstract":"<p><p>Harmful cyanobacterial blooms pose severe threats to aquatic ecosystems. Bloom-forming cyanobacteria form cyanobacterial aggregates (CAs) that create a phycosphere supporting diverse microbial interactions. Here, longitudinal metagenomics and metatranscriptomics were employed to explore the temporal variation of CA-attached viral communities throughout cyanobacterial blooms in Lake Taihu. Viral communities, represented by 5613 viral operational taxonomic units, showed increased relative abundance (RPKM) with the expansion of bloom areas. Among 1791 virus‒host linkages, host shifts followed the succession of two dominant cyanobacterial genera, Microcystis and Dolichospermum. Viruses demonstrated high virus‒host abundance ratios within all host genera and showed elevated transcriptional activities infecting Dolichospermum during the late bloom stage. Viruses featured high microdiversity and positively selected replication-associated genes in response to abundant host genera and variable trophic status. This study uncovered diverse active viral auxiliary metabolism associated with photosynthesis, biochemical cycling, and DNA biosynthesis, and highlighted the significant role of phycosphere-associated viruses during cyanobacterial blooms.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"178"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00771-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Harmful cyanobacterial blooms pose severe threats to aquatic ecosystems. Bloom-forming cyanobacteria form cyanobacterial aggregates (CAs) that create a phycosphere supporting diverse microbial interactions. Here, longitudinal metagenomics and metatranscriptomics were employed to explore the temporal variation of CA-attached viral communities throughout cyanobacterial blooms in Lake Taihu. Viral communities, represented by 5613 viral operational taxonomic units, showed increased relative abundance (RPKM) with the expansion of bloom areas. Among 1791 virus‒host linkages, host shifts followed the succession of two dominant cyanobacterial genera, Microcystis and Dolichospermum. Viruses demonstrated high virus‒host abundance ratios within all host genera and showed elevated transcriptional activities infecting Dolichospermum during the late bloom stage. Viruses featured high microdiversity and positively selected replication-associated genes in response to abundant host genera and variable trophic status. This study uncovered diverse active viral auxiliary metabolism associated with photosynthesis, biochemical cycling, and DNA biosynthesis, and highlighted the significant role of phycosphere-associated viruses during cyanobacterial blooms.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.