Shu-Ying Li, Hong Zhou, Guoli Zhao, Wen-Wen Ding, Yu Zhang, Yong-Chen Wang, Fang Li, Yanying Miao, Xing-Huai Sun, Zhongfeng Wang
{"title":"Tumor Necrosis Factor Alpha-Mediated Interaction Between Microglia and Müller Cells Exacerbates Retinal Ganglion Cell Damage in Experimental Glaucoma.","authors":"Shu-Ying Li, Hong Zhou, Guoli Zhao, Wen-Wen Ding, Yu Zhang, Yong-Chen Wang, Fang Li, Yanying Miao, Xing-Huai Sun, Zhongfeng Wang","doi":"10.1007/s12264-025-01478-1","DOIUrl":null,"url":null,"abstract":"<p><p>Interaction between Müller cells and microglia aggravates neuroinflammation, resulting in retinal ganglion cell (RGC) death in glaucoma. Here, we investigated how tumor necrosis factor-alpha (TNF-α) produced by activated microglia mediates the crosstalk between Müller cells and microglia and impacts RGC injury in a chronic ocular hypertension (COH) glaucoma model. In COH retinas, elevated TNF-α induced the activation of Müller cells and microglia, and recruited microglia to the ganglion cell layer. Co-culture with Müller cells enhanced TNF-α-induced microglial activation, migration, and proliferation. Both in vivo and in vitro experiments confirmed that chemokine C-C motif ligand 2 (CCL2), primarily released from Müller cells, mediated the TNF-α-induced effects on microglia in COH retinas. Knockdown of CCL2 attenuated RGC damage and vision loss. Our results demonstrate that TNF-α released from microglia induces the secretion of CCL2 from Müller cells, thus inducing microglial activation and migration, exacerbating retinal neuroinflammation and RGC injury in glaucoma.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01478-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Interaction between Müller cells and microglia aggravates neuroinflammation, resulting in retinal ganglion cell (RGC) death in glaucoma. Here, we investigated how tumor necrosis factor-alpha (TNF-α) produced by activated microglia mediates the crosstalk between Müller cells and microglia and impacts RGC injury in a chronic ocular hypertension (COH) glaucoma model. In COH retinas, elevated TNF-α induced the activation of Müller cells and microglia, and recruited microglia to the ganglion cell layer. Co-culture with Müller cells enhanced TNF-α-induced microglial activation, migration, and proliferation. Both in vivo and in vitro experiments confirmed that chemokine C-C motif ligand 2 (CCL2), primarily released from Müller cells, mediated the TNF-α-induced effects on microglia in COH retinas. Knockdown of CCL2 attenuated RGC damage and vision loss. Our results demonstrate that TNF-α released from microglia induces the secretion of CCL2 from Müller cells, thus inducing microglial activation and migration, exacerbating retinal neuroinflammation and RGC injury in glaucoma.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.