Pengfei Wang, Weina Dai, Hongmin Li, Weijie Li, Yang Wang, Yichang Liu, Le Wang, Fanglei Ye, Yuming Xu
{"title":"Temporal Features of Gamma Activity of Hyper-direct Pathway Regulated by Dopamine Receptors in the Dyskinetic Rat.","authors":"Pengfei Wang, Weina Dai, Hongmin Li, Weijie Li, Yang Wang, Yichang Liu, Le Wang, Fanglei Ye, Yuming Xu","doi":"10.1007/s12264-025-01470-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cortico-thalamic projections (the hyper-direct pathway) are implicated in levodopa-induced dyskinesia (LID), a challenging complication in the advanced stages of Parkinson's disease (PD). Excessive beta and gamma activity in PD and LID has frequently been reported in recent cross-sectional studies. We aimed to investigate the temporal features of beta and gamma activity in the hyper-direct pathway during the development of PD and LID in rats, as well as the regulatory role of the dopamine receptors DI (D1Rs) and DIII (D3Rs) in these disorders. We recorded motor behavior and electrophysiological data during the development of PD and LID, and after interventions with D1R and D3R antagonists and agonists. We demonstrated exaggerated beta-band activity in the PD state and excessive gamma-band activity during on-state dyskinesia. Subsequently, process-dependent increased beta activity correlated with bradykinesia during PD modeling, while process-dependent increased gamma activity correlated with dyskinesia under the cumulative effects of levodopa during on-state dyskinesia. Finally, both D1Rs and D3Rs were found to be involved in regulating dyskinesia and gamma activity. Dynamic oscillations are closely associated with motor behavior, and mapping dynamic oscillations may be associated with optimizing deep brain stimulation parameters and developing personalized neurotherapeutic targeting. Moreover, D1Rs and D3Rs may ameliorate dyskinesia by mediating gamma oscillations.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01470-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cortico-thalamic projections (the hyper-direct pathway) are implicated in levodopa-induced dyskinesia (LID), a challenging complication in the advanced stages of Parkinson's disease (PD). Excessive beta and gamma activity in PD and LID has frequently been reported in recent cross-sectional studies. We aimed to investigate the temporal features of beta and gamma activity in the hyper-direct pathway during the development of PD and LID in rats, as well as the regulatory role of the dopamine receptors DI (D1Rs) and DIII (D3Rs) in these disorders. We recorded motor behavior and electrophysiological data during the development of PD and LID, and after interventions with D1R and D3R antagonists and agonists. We demonstrated exaggerated beta-band activity in the PD state and excessive gamma-band activity during on-state dyskinesia. Subsequently, process-dependent increased beta activity correlated with bradykinesia during PD modeling, while process-dependent increased gamma activity correlated with dyskinesia under the cumulative effects of levodopa during on-state dyskinesia. Finally, both D1Rs and D3Rs were found to be involved in regulating dyskinesia and gamma activity. Dynamic oscillations are closely associated with motor behavior, and mapping dynamic oscillations may be associated with optimizing deep brain stimulation parameters and developing personalized neurotherapeutic targeting. Moreover, D1Rs and D3Rs may ameliorate dyskinesia by mediating gamma oscillations.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.